• Title/Summary/Keyword: Envelope function

Search Result 151, Processing Time 0.02 seconds

Development of CAD tool for optimal spot weld joints (점용접 위치의 최적화를 위한 CAD Tool 개발)

  • Ryu, Si-Uk;Lee, Jong-Chan;Lee, Tae-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.1
    • /
    • pp.148-159
    • /
    • 1998
  • Spot welding palys a key role in increasing productivity and weight reduction of the final products. This paper proposes a systematic approach on the design of spot weld configuration, dealing with the requried number and location of spot weld joints under the given design parameters, such as the applied loads, lap area, and individual spot weld strength. The optimal design of a spot-welded joint is postulated as a state when the safety factors of all spot weld points (i) are evenly distributed and (ii) reach maximum value. A CAD program is developed to arrange the optimal location of each spot weld based on the derived objective function and constraints. The CAD tool integrates the optimization procedure with Finite Element Analysis (FEA) code through an interface. The interface automatically provides geometrical data and mesh configuration for different spot weld locations to FEA model. It also extracts the transmitted load of each spot weld from the FEA code, and allows the optimization code predict an improved arrangement of spot weld locations. The feasibility of the developed approach is demonstrated by the selected examples.

Stochastic Analysis of Base-Isolated Pool Structure Considering Fluid-Structure Interaction Effects (유체-구조물 상호작용을 고려한 면진구조물의 추계학적 응답해석)

  • Koh, Hyun Moo;Kim, Jae Kwan;Park, Kwan Soon;Ha, Dong Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.463-472
    • /
    • 1994
  • A method of stochastic response analysis of base-isolated fluid-filled pool structures subject to random ground excitations is studied. Fluid-structure interaction effects between the flexible walls and contained fluid are taken into account in the form of added mass matrix derived by FEM modeling of the contained fluid motion. The stationary ground excitation is represented by Modified Clough-Penzien spectral model and the nonstationary one is obtained by imposing an envelope function on the stationary one. The stationary and nonstationary response statistics of the two different isolation systems are obtained by solving the governing Lyapunov covariance matrix differential equations.

  • PDF

Endochronic simulation for viscoplastic collapse of long, thick-walled tubes subjected to external pressure and axial tension

  • Lee, Kuo-Long;Chang, Kao-Hua
    • Structural Engineering and Mechanics
    • /
    • v.18 no.5
    • /
    • pp.627-644
    • /
    • 2004
  • In this study, the endochronic theory was used to investigate the collapse of thick-walled tubes subjected to external pressure and axial tension. The experimental and theoretical findings of Madhavan et al. (1993) for thick-walled tubes of 304 stainless steel subjected to external pressure and axial tension were compared with the endochronic simulation. Collapse envelopes for various diameter-to-thickness tubes under two different pressure-tension loadings were involved. It has been shown that the experimental results were aptly described by the endochronic approach demonstrated from comparison with the theoretical prediction employed by Madhavan et al. (1993). Furthermore, by using the rate-sensitivity function of the intrinsic time measure proposed by Pan and Chern (1997) in the endochronic theory, our theoretical analysis was extended to investigate the viscoplastic collapse of thick-walled tubes subjected to external pressure and axial tension. It was found that the pressure-tension collapse envelopes are strongly influenced by the strain-rate during axial tension. Due to the hardening of the metal tube of 304 stainless steel under a faster strain-rate during uniaxial tension, the size of the tension-collapse envelope increases.

Generation of critical and compatible seismic ground acceleration time histories for high-tech facilities

  • Hong, X.J.;Xu, Y.L.
    • Structural Engineering and Mechanics
    • /
    • v.26 no.6
    • /
    • pp.687-707
    • /
    • 2007
  • High-tech facilities engaged in the production of semiconductors and optical microscopes are extremely expensive, which may require time-domain analysis for seismic resistant design in consideration of the most critical directions of seismic ground motions. This paper presents a framework for generating three-dimensional critical seismic ground acceleration time histories compatible with the response spectra specified in seismic design codes. The most critical directions of seismic ground motions associated with the maximum response of a high-tech facility are first identified. A new numerical method is then proposed to derive the power spectrum density functions of ground accelerations which are compatible with the response spectra specified in seismic design codes in critical directions. The ground acceleration time histories for the high-tech facility along the structural axes are generated by applying the spectral representation method to the power spectrum density function matrix and then multiplied by envelope functions to consider nonstationarity of ground motions. The proposed framework is finally applied to a typical three-story high-tech facility, and the numerical results demonstrate the feasibility of the proposed approach.

System Identification and Stability Evaluation of an Unmanned Aerial Vehicle From Automated Flight Tests

  • Jinyoung Suk;Lee, Younsaeng;Kim, Seungjoo;Hueonjoon Koo;Kim, Jongseong
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.654-667
    • /
    • 2003
  • This paper presents a consequence of the systematic approach to identify the aerodynamic parameters of an unmanned aerial vehicle (UAV) equipped with the automatic flight control system. A 3-2-1-1 excitation is applied for the longitudinal mode while a multi-step input is applied for lateral/directional excitation. Optimal time step for excitation is sought to provide the broad input bandwidth. A fully automated programmed flight test method provides high-quality flight data for system identification using the flight control computer with longitudinal and lateral/directional autopilots, which enable the separation of each motion during the flight test. The accuracy of the longitudinal system identification is improved by an additional use of the closed-loop flight test data. A constrained optimization scheme is applied to estimate the aerodynamic coefficients that best describe the time response of the vehicle. An appropriate weighting function is introduced to balance the flight modes. As a result, concurrent system models are obtained for a wide envelope of both longitudinal and lateral/directional flight maneuvers while maintaining the physical meanings of each parameter.

Experimental Study on the Thermal Effect of BIPV Modules Depending on the Ventilation Type of PV Module Backside (후면 환기조건에 따른 건물외피용 태양광발전(BIPV) 모듈의 열적 영향에 관한 실험연구)

  • Yoon, Jong-Ho;Kim, Jae-Ung
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.1
    • /
    • pp.81-89
    • /
    • 2006
  • Building integrated photovoltaic (BIPV) system operates as a multi-functional building construction material. They not only produce electricity, but also are building integral components such as facade, roof, window and shading device. On the other hands lots of architectural considerations should be reflected such as Installation position, shading, temperature effect and so on. As PV modules function like building envelope in BIPV, combined thermal and PV performance should be simultaneously evaluated This study is on the combined thermal and PV performance evaluation of BIPV modules. The purpose of this study is to investigate a temperature effect of PV module depending on the ventilation type of PV module backside. Test cell experiment was performed to identify the thermal and power effect of PV modules. Measurement results on the correlation of temperature and power generation were obtained. Those results can be utilized for the development of optimal BIPV installation details in the very early design stage.

Simulation and Verification of the Received Signals in Rician Channel (라이시안 채널에서의 수신 신호 모의 실험 및 검증)

  • Lee, Bom-Son;Lee, Il-Yong;Park, Jung-Il;park, Kyung-Ryung;Yeon, Kwang-Il;Eo, Ik-Soo;Kang, In
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.9 no.3
    • /
    • pp.347-358
    • /
    • 1998
  • The possibility of modeling the complex and diversified radio environment using Rician channel has been considered. The signals received in Rician channel have been simulated using the computer simulator. The PDF(Probability Density Function of the Envelope amplitude), PSD(Power Spectral Density), LCR(Level Crossing Rate), ADF(Average Duration of Fades) and BER(Bit Error Rate) of the simulated signal have been compared with those of theory. They were shown to be in good agreement.

  • PDF

Efficient buffeting analysis under non-stationary winds and application to a mountain bridge

  • Su, Yanwen;Huang, Guoqing;Liu, Ruili;Zeng, Yongping
    • Wind and Structures
    • /
    • v.32 no.2
    • /
    • pp.89-104
    • /
    • 2021
  • Non-synoptic winds generated by tornadoes, downbursts or gust fronts exhibit significant non-stationarity and can cause significant wind load effect on flexible structures such as long-span bridges. However, conventional assumptions on stationarity used to evaluate the structural wind-induced vibration are inadequate. In this paper, an efficient frequency domain scheme based on fast CQC method, which can predict non-stationary buffeting random responses of long-span bridges, is presented, and then this approach is applied to evaluate the buffeting response of a long-span suspension bridge located in a complex mountainous wind environment as an example. In this study, the data-driven method based on one available measured wind speed sample is firstly presented to establish non-stationary wind models, including time-varying mean wind speed, time-varying intensity envelope function and uniformly modulated fluctuating spectrum. Then, a linear time-variant (LTV) system based on the proposed scheme can be generally applied to calculate the non-stationary buffeting responses. The effectiveness and accuracy of the proposed scheme are verified through Monte Carlo time domain simulation implemented in ANSYS platform. Also, the transient effect nature of the bridge responses is further illustrated by comparison of the non-stationary, quasistationary and steady-state cases. Finally, buffeting response analysis with traditional stationary treatment (10 min constant mean plus stationary wind fluctuation) is performed to illustrate the importance of the non-stationary characteristics embedded in original wind speed samples.

Research Trends in the Development of Cosmetic Ingredients for Skin Barrier Improvement

  • Hyung-Bum Park;Jeong-Yeon Park
    • Journal of the Korean Applied Science and Technology
    • /
    • v.40 no.6
    • /
    • pp.1445-1453
    • /
    • 2023
  • In 2022, the domestic production performance of functional cosmetics in South Korea reached 4.6 trillion won, accounting for 33.85% of the total cosmetics production. The number of functional cosmetics reviewed increased by about 7.5% from the previous year, totaling 974 items. Especially with the increasing importance of the skin barrier function due to skin sensitivity caused by various environmental pollutants, domestic cosmetic companies are showing interest in the development of new ingredients and products related to this area. This study aims to analyze academic research trends related to in vitro experiments for the development of cosmetics improving the skin barrier, to provide practical information for the cosmetic industry. The findings are as follows: Academic research mainly focused on the efficacy of natural ingredients in improving the skin barrier, but there is a significant lack of quantitative accumulation of research. For the development of skin barrier-improving cosmetic ingredients, efficacy evaluation indicators were set, including hyaluronic acid production, expression of filaggrin gene, loricrin, formation of cornified envelope (CE), and expression of ceramide synthesis enzyme genes. Moreover, effective cosmetic ingredients for improving the skin barrier included lemongrass and perilla leaf extracts, flavonoids, Lactococcus lactis subsp. lactis, Exosomelike Nanovesicles derived from apple callus, Eleutherococcus sessiliflorus, Acanthopanax sessiliflorus, Eleutherococcus gracilistylus, Acer okamotoanum extracts, Aloe vera adventitious root extract, ethanol extract of Aruncus dioicus, and organic solvent fraction of Dracocephalum argunense.

Seismic Response Analysis of NPP Containment Structures to Improve the Guidelines of Strong Motion Duration (강진지속시간 기준 개선을 위한 원전 격납구조물의 지진응답해석)

  • Huh, Jung-Won;Jung, Ho-Sub;Kim, Jae-Min;Hyun, Chang-Hun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.4
    • /
    • pp.33-43
    • /
    • 2011
  • This paper addresses a fundamental study that is necessary to complement and improve the current domestic design specifications for the strong motion duration criterion and the envelope function of artificial accelerograms that can be applied to the earthquake-proof design of nuclear structures. The criteria for the design response spectra and strong motion duration suggested by USNRC and ASCE Standard 4-98 are commonly being used in the profession, and they are first compared with each other and reviewed. By applying 209 real strong earthquake records that are greater than 5 in magnitude at rock sites to the strong motion duration criterion in ASCE 4-98, an empirical regression model that predicts the strong motion duration as a function of the earthquake magnitude was then developed. Using synthetically generated earthquake time histories for the 10 cases whose strong motion durations varied from 6 to 20 seconds, extensive seismic analyses were finally conducted to identify the effects of the strong motion durations on the seismic responses of the nuclear power plant containment structures.