• Title/Summary/Keyword: Envelope Analysis

Search Result 446, Processing Time 0.032 seconds

EEG signal Analysis using Homomorphic system (Homomorphic 시스템을 이용한 뇌파신호 해석에 관한 연구)

  • Lee, G.K.;Han, S.B.;Shin, T.M.;Jo, W.R.;Suh, J.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1991 no.11
    • /
    • pp.34-36
    • /
    • 1991
  • 본 논문에서는 저주파의 envelope와 고주파의 neural oscillation 신호의 곱으로 이루어진 EEG 신호의 envelope를 추출을 하기 위하여 multiplicative homomorphic 시스템을 사용하였다. 이 방법은 다른 방법에 비하여 처리 과정이 간단하여 계산량이 감소되어 실시간 envelope 추출의 가능성을 보였으며, 또 neural oscillation signal의 주파수가 변하여도 정확한 envelope 추출할 수 있는 우수한 적응력을 보였다.

  • PDF

Evaluation Method for Non-linear Shear Strength of Gravel Materials (자갈질 재료의 비선형적 전단강도 특성 평가법)

  • Shin, Dong-Hoon;Cho, Seong-Eun;Lim, Eun-Sang;Park, Han-Gyu
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.288-298
    • /
    • 2009
  • It is well known that the peak strength envelope of geomaterials with no cohesion, such as sand, gravel and rockfill, exhibits significant curvature over a range of stresses. In a practical design of slope, however, the linear Mohr-Coulomb's failure envelope is used as a failure criterion and consequently gives inaccurate safety factors, especially for some ranges of small normal stresses on shallow failure surfaces. Necessity of a nonlinear shear strength envelope in slope stability analysis is on this point. Hence, this study describes how to evaluate nonlinear shear strength of gravel fill materials using the results of large triaxial tests under consolidated-drained condition, and compares the safety factors from slope stability analyses for a homogeneous gravel fill or rockfill embankment incorporating the non-linearity of strength, so as to show its effects on safety factors.

  • PDF

Application of Artificial Neural Network for Optimum Controls of Windows and Heating Systems of Double-Skinned Buildings (이중외피 건물의 개구부 및 난방설비 제어를 위한 인공지능망의 적용)

  • Moon, Jin-Woo;Kim, Sang-Min;Kim, Soo-Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.8
    • /
    • pp.627-635
    • /
    • 2012
  • This study aims at developing an artificial neural network(ANN)-based predictive and adaptive temperature control method to control the openings at internal and external skins, and heating systems used in a building with double skin envelope. Based on the predicted indoor temperature, the control logic determined opening conditions of air inlets and outlets, and the operation of the heating systems. The optimization process of the initial ANN model was conducted to determine the optimal structure and learning methods followed by the performance tests by the comparison with the actual data measured from the existing double skin envelope. The analysis proved the prediction accuracy and the adaptability of the ANN model in terms of Root Mean Square and Mean Square Errors. The analysis results implied that the proposed ANN-based temperature control logic had potentials to be applied for the temperature control in the double skin envelope buildings.

Nonlinear self-induced vibration and operability envelope analysis of production strings in marine natural gas development

  • Liu, Kang;Chen, Guoming;Zhu, Gaogeng;Zhu, Jingyu
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.344-352
    • /
    • 2019
  • Marine production strings are continuously affected by unstable internal fluid during operation. In this paper, the structural governing equation for marine production string self-induced vibration is constructed. A finite element analysis model is established based on Euler-Bernoulli theory and solved by the Newmark method. Furthermore, based on reliability theory, a self-design procedure is developed to determine the operability envelope for marine production string self-induced vibration. Case studies show: the response frequency of the production strings is consistent with the excitation frequency under harmonic fluctuation and mainly determined by the first-order natural frequency under stochastic fluctuation. The operability envelope for marine production string self-induced vibration is a near symmetrical trapezium. With the increasing of natural gas output, the permissible fluctuation coefficient dramatically decreases. A reasonable centralizer spacing, increasing top tension, and controlling natural gas output are of great significance to the risk control in marine production string operation.

Analysis of surface design and panel optionsfor freeform building

  • Min Gyu Park;Han Guk Ryu
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.553-557
    • /
    • 2013
  • Roof and exterior wall are designed and constructed in a manner that prevents the accumulation of water within the wall and roof assembly in the formal building. However, in a freeform building there is no clear distinction between exterior wall and roof. In other words, the exterior walls and roof systems of the freeform building are integrated as a surface, unlike the formal building envelope. Therefore, freeform architecture needs a systemized envelope design method to perform functions of exterior wall and roof. However, in many cases, construction methods for roof and exterior wall are applied to freeform buildings without necessary alterations, which lead to incomplete design, leakage, cracks and other problems. Freeform architecture is thus designed and constructed differently from formal buildings. In order to more easily and inexpensively actualize freeform architecture, Building Information Modeling (hereinafter referred to as BIM) has recently been applied in the construction industry. The studies and case analysis are not sufficient to identify the implications and contributions of freeform buildings in future similar projects. Therefore, this research will study design and construction methods for freeform surfaces. This study attempts to analyze the pros and cons of each method for the concrete surface frame, and then presents the panel options for envelope system of the freeform architecture.

  • PDF

Identification and Expression of Retroviral Envelope Polyprotein in the Dogfish Squalus mitsukurii

  • Kim, Soo Cheol;Sumi, Kanij Rukshana;Choe, Myeong Rak;Kho, Kang Hee
    • Journal of Marine Life Science
    • /
    • v.1 no.2
    • /
    • pp.88-94
    • /
    • 2016
  • Determining the infection history of living organisms is essential for understanding the evolution of infection agents with their host, particularly for key aspects such as immunity. Viruses, which can spread between individuals and often cause disease, have been widely examined. The increasing availability of fish genome sequences has provided specific insights into the diversity and host distribution of retroviruses in fish. The shortspine spurdog (Squalus mitsukurii) is an important elasmobranch species; this medium-sized dogfish typically lives at depths of 100~500 m. However, the retroviral envelope polyprotein in dogfish has not been examined. Thus, the aim of the present study was to identify and analyze the retroviral envelope polyprotein in various tissues of dogfish. The 1334-base pair full-length novel cDNA of dogfish envelope polyprotein (dEnv) was obtained by 3' and 5'-rapid amplification of cDNA end analysis from S. mitsukurii. The open reading frame showed a complete coding sequence of 815 base pairs with a deduced peptide sequence of 183 amino acids that exhibited 34~50% identity with other fish and bird species. It was also expressed according to reverse transcription and real-time polymerase chain reaction in the kidney, liver, intestine, and lung, but not in the gill. This distribution can be assessed by identifying and analyzing endogenous retroviruses in fish, which consists of three main genes: gag, pol and env. Dogfish envelope polyprotein sequence is likely important in evolution and induces rearrangements, altering the regulatory and coding sequences. This is the first report of the identification and molecular characterization of retroviral envelope polyprotein in various tissues of S. mitsukurii.

Kinematic Envelope Effect Analysis of the Urban Transit EMU According to PSD Installation (PSD 설치에 따른 도시철도차량의 Kinematic Envelope 영향 분석)

  • Chung, Jong-Duk;Pyun, Jang-Sik;Cho, Hui-Je;Hong, Yong-Ki
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1779-1784
    • /
    • 2010
  • Since PSD(Platform Screen Door) is set up at many subway stations, its design related to a safety becomes gradually important. Especially the intereference check with a running railway vehicle is the most important of performance indices. This study proposes a dynamic analysis models for the railway vehicle and rail. Some design parameters are considered in the models to find a correlation to the performance.

  • PDF

Thermal Analysis of Wall/Floor Intersections in Building Envelope

  • Ihm, Pyeongchan
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.12 no.2
    • /
    • pp.97-107
    • /
    • 2004
  • Wall/floor intersection is important parts of a building envelope system. These intersections can be sources of thermal bridging effects and/or moisture condensation problems. This paper provides a detailed analysis of the thermal performance of wall/floor intersection. In particular, two-dimensional steady-state and transient solutions of the heat conduction within the wall/floor joint are presented. Various insulation configurations are considered to determine the magnitude of heat transfer increase due to wall/floor joint construction.

A qualitative evaluation method for engine and its operating-envelope using GSP (Gas turbine Simulation Program)

  • Kyung, Kyu-Hyung;Jun, Yong-Min;Yang, Soo-Seok;Choi, Dong-Whan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.848-853
    • /
    • 2004
  • Regarding to the project SUAV (Smart Unmanned Aerial Vehicle) in KARI (Korea Aerospace Research Institute), several engine configurations has been evaluated. However it's not an easy task to collect all the necessary data of each engine for the analysis. Usually, some kind of modeling technique is required in order to determine the unknown data. In the present paper a qualitative method for reverse engineering is proposed, in order to identify some design patterns and relationships between parameters. The method can be used to estimate several parameters that usually are not provided by the manufacturer. The method consists of modeling an existing engine and through a simulation, compare its transient behavior with its operating envelope. In the simulation several parameters such as thermodynamics, performance, safety and mechanics concerning to the definition of operation-envelope, have been discussed qualitatively. With the model, all engine parameters can be estimated with acceptable accuracy, making possible the study of dependencies among different parameters such as power-turbine total inertia, TIT, take-off time and part load, in order to check if the engine transient performance is within the design criteria. For more realistic approach and more detailed design requirements, it will be necessary to enhance the compressor map first, and more realistic estimated values must be taken into account for intake-loss, bleed-air and auxiliary power extraction. The relative importance of these “unknown” parameters must be evaluated using sensitivity analysis in the future evaluation. Moreover, fluid dynamics, thermal analysis and stress analysis necessary for the resulting life assessment of en engine, will not be addressed here but in a future paper. With the methodology presented in the paper was possible to infer the relationships between operation-envelope and engine parameters.

  • PDF

Construction of Design Table for Envelope Curve Analysis of Base Isolated Buildings (면진건물의 포락해석을 위한 설계용 도표 산정면진건물의 포락해석을 위한 설계용 도표 산정면진건물의 포락해석을 위한 설계용 도표 산정)

  • Lee, Hyun-Ho;Cheon, Yeong-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.2
    • /
    • pp.59-67
    • /
    • 2006
  • The aim of this study is to evaluate the design table for envelope curve analysis of base isolated buildings, which represent the period of base isolated buildings and the lateral displacement of base isolation devices. For the construction of design table, $V_E$ spectrum, which represents the energy, is developed instead of acceleration of seismic hazard. Based on the seismic coefficient of UBC 97, boundary period $T_G$ and maximum velocity response $V_0$ are proposed considering Korea seismic hazard. Using $T_G$ and $V_0$, finally, $V_E$ spectrum is developed for the four types of soil conditions. Base on the $V_E$ spectrum, design table for envelope curve analysis is also developed for soil types.