Communications for Statistical Applications and Methods
/
제16권2호
/
pp.277-286
/
2009
영상정합은 동일한 장면에 대해서 서로 다른 시간 혹은 특성의 센서로부터 서로 다른 위치 에서 얻는 영상들의 공간적 대응관계를 찾는 과정이다. 본 논문에서는 동일 환자에게 촬영한 뇌 MR과 CT영상간의 상이한 공간좌표계의 차이를 보정하기 위 한 강인한 정합방법을 소개한다. 두 영상의 명암도에 대한 결합 히스토그램으로부터 계산된 개선된 조건부 엔트로피(MCE: Modified Conditional Entropy)를 이용하여 최대인 위치로 정합을 수행하고, 3차원 볼륨 렌더링 기법을 이용하여 정합된 영상을 가시화한다.
In this paper, a novel gray-scale lossless image coder combining context-based minimum mean squared error (MMSE) prediction and entropy coding is proposed. To obtain context of prediction, this paper first defines directional difference according to sharpness of edge and gradients of localities of image data. Classification of 4 directional differences forms“geometry context”model which characterizes two-dimensional general image behaviors such as directional edge region, smooth region or texture. Based on this context model, adaptive DPCM prediction coefficients are calculated in MMSE sense and the prediction is performed. The MMSE method on context-by-context basis is more in accord with minimum entropy condition, which is one of the major objectives of the predictive coding. In entropy coding stage, context modeling method also gives useful performance. To reduce the statistical redundancy of the residual image, many contexts are preset to take full advantage of conditional probability in entropy coding and merged into small number of context in efficient way for complexity reduction. The proposed lossless coding scheme slightly outperforms the CALIC, which is the state-of-the-art, in compression ratio.
KSII Transactions on Internet and Information Systems (TIIS)
/
제16권12호
/
pp.3889-3903
/
2022
To address the problem of low detection accuracy due to training noise caused by mislabeling when Tri-training for network intrusion detection (NID), we propose a Tri-training algorithm based on cross entropy and K-nearest neighbors (TCK) for network intrusion detection. The proposed algorithm uses cross-entropy to replace the classification error rate to better identify the difference between the practical and predicted distributions of the model and reduce the prediction bias of mislabeled data to unlabeled data; K-nearest neighbors are used to remove the mislabeled data and reduce the number of mislabeled data. In order to verify the effectiveness of the algorithm proposed in this paper, experiments were conducted on 12 UCI datasets and NSL-KDD network intrusion datasets, and four indexes including accuracy, recall, F-measure and precision were used for comparison. The experimental results revealed that the TCK has superior performance than the conventional Tri-training algorithms and the Tri-training algorithms using only cross-entropy or K-nearest neighbor strategy.
Goodness of fit test statistics based on the information discrepancy have been shown to perform very well (Vasicek 1976, Dudewicz and van der Meulen 1981, Chandra et al 1982, Gohkale 1983, Arizona and Ohta 1989, Ebrahimi et al 1992, etc). Although the test is well defined for the non-censored case, censored case has not been discussed in the literature. Therefore we consider a goodness of fit test based on the partial Kullback-Leibler(KL) information with the type II censored data. We derive the partial KL information of the null distribution function and a nonparametric distribution function, and establish a goodness of fit test statistic. We consider the exponential and normal distributions and made Monte Calro simulations to compare the test statistics with some existing tests.
We present the Shannon entropy as an indicator of the spatial resolutions of the morphologies of the resonance mode patterns in an optical resonator. We obtain each optimized number of mesh points, one of minimum size and the other of maximum one. The optimized mesh-point number of minimum size is determined by the identifiable quantum number through a chi-squared test, whereas the saturation of the difference between Shannon entropies corresponds to the other mesh-point number of maximum size. We also show that the optimized minimum mesh-point increases as the (real) wave number increases and approximates the proportionality constant between them.
러프집합을 구성하는 식별불가능 관계를 표현하는 정보시스템에서 데이터의 중복이나 비일관성은 피할 수 없기 때문에 속성의 감축은 매우 중요하다. 러프집합이론에 있어서 일관적인 정보시스템과 비일관적인 정보시스템의 속성감축의 차이를 극복하고 자, 본 연구에서는 조건 및 결정속성에 대한 상관분석에 베이지언 사후확률을 적용한 새로운 불확실성 척도와 속성감축 알고리즘을 제안한다. 정보시스템의 불확실성에 대하여 제안된 척도와 기존의 조건부 정보엔트로피 척도를 비교해 본 결과, 정보시스템의 조건속성과 결정속성의 상호정보를 이용하여 속성간의 불확실성을 측정하는데 있어 제안된 방법이 조건부 정보엔트로피에 의한 방법보다 정확성이 있음을 보여준다.
Information storage and retrieval is a part of general communication process. In the Shannon's information theory, information contained in a message is a measure of -uncertainty about information source and the amount of information is measured by entropy. Indexing is a process of reducing entropy of information source since document collection is divided into many smaller groups according to the subjects documents deal with. Significant concepts contained in every document are mapped into the set of all sets of index terms. Thus index itself is formed by paired sets of index terms and documents. Without indexing the entropy of document collection consisting of N documents is $log_2\;N$, whereas the average entropy of smaller groups $(W_1,\;W_2,...W_m)$ is as small $(as\;(\sum\limits^m_{i=1}\;H(W_i))/m$. Retrieval efficiency is a measure of information system's performance, which is largely affected by goodness of index. If all and only documents evaluated relevant to user's query can be retrieved, the information system is said $100\%$ efficient. Document file W may be potentially classified into two sets of relevant documents and non-relevant documents to a specific query. After retrieval, the document file W' is reclassified into four sets of relevant-retrieved, relevant-not retrieved, non-relevant-retrieved and non-relevant-not retrieved. It is shown in the paper that the difference in two entropies of document file Wand document file W' is a proper measure of retrieval efficiency.
Extended reduced difference pyramid (ERDP) is proposed for lossless progressive image transmission, which is based on a new transform called rounded-transform(RT). The RT is a nonlinear and reversible transform of integers into integers utilizing two kinds of the rounding operations such as round up and down. The ERDP can be obtained from an N-poing RT or a series of RTs of both. For the performance evaluation, the entropy of the difference images to be transmitted is used as a lower bound transmission rate. Two examples of the ERDP can be easily shown, which is more effective in the entropy than the ordinary RDP.
시선 인식에 관한 연구는 현재 사용자가 응시하고 있는 위치를 파악하는 것으로 많은 응용 분야를 가지며 지속적으로 발전되어 왔다. 기존의 시선 인식에 관한 대부분의 연구는 적외선 LED 및 카메라, 고가의 헤드마운티드 장비 등을 이용하였기 때문에 범용 사용에 문제점을 가지고 있다. 이에 본 논문에서는 한 대의 PC용 웹 카메라를 사용한 SVM(Support Vector Machine) 기반의 시선 인식 시스템을 제안하고 구현한다. 제안한 시스템은 4방향과 9방향의 시선을 인식하기 위해 모니터를 가로 6, 세로 6, 총 36개의 시선 위치로 나누어 각각 9개, 4개씩 그룹핑 및 학습하여 사용자의 시선을 인식한다. 또한, 시선 인식의 성능을 높이기 위해 차영상 엔트로피를 이용한 영상 필터링 방법을 적용한다. 제안한 시스템의 성능을 평가하기 위하여 기존에 제시되었던 차영상 엔트로피 기반의 시선 인식 시스템, 눈동자 중심점과 눈의 끝점을 이용한 시선 인식 시스템, PCA 기반의 시선 인식 시스템을 구현하고 비교 실험을 수행하였다. 실험 결과 본 논문에서 제안한 SVM 기반의 시선 인식 시스템이 4방향은 94.42%, 9방향은 81.33%의 인식 성능을 보였으며, 차영상 엔트로피를 이용한 영상 필터링 방법을 적용하였을 경우에 4방향은 95.37%, 9방향은 82.25%의 성능을 보여 기존의 시선 인식 시스템보다 높은 성능을 나타내었다.
러프집합에서 식별불능의 관계와 근사공간의 개념을 이용해서 의사결정표로부터 최적화된 정보를 유도하게 된다. 그러나 일반적으로 결정표에서 데이터의 중복이나 비일관성은 피할 수 없기 때문에 속성의 중요성은 지식의 감축에서 매우 중요한 개념이다. 속성의 중요성에 대한 대수학적인 정의는 도메인중의 완전한 부분집합에 대한 해당 속성이 주는 영향을 고려하는 것이고, 정보이론적인 정의는 도메인 중의 불완전한 부분집합에 대한 해당 속성이 주는 영향을 고려하는 것이다. 따라서 속성 중요성은 정보이론적인 관점의 정의와 대수학인 관점의 정의가 분명하게 차이가 있다. 본 논문에서는 정보시스템의 조건속성과 결정속성에 포함될 수 있는 정보를 최적화하기 위한 정보이론적인 척도로써 러프집합을 이용한 조건부 정보엔트로피를 제안하고 그 효용성을 보인다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.