• Title/Summary/Keyword: Entropy Weighting

Search Result 33, Processing Time 0.016 seconds

Evaluation of Non-point source Vulnerable Areas In West Nakdong River Watershed Using TOPSIS (TOPSIS를 이용한 서낙동강 유역 비점오염 취약지역 평가 연구)

  • KAL, Byung-Seok;PARK, Jae-Beom;KIM, Ye-Jin
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.24 no.1
    • /
    • pp.26-39
    • /
    • 2021
  • This study investigated the characteristics of the watershed and pollutants in the Seonakdong River basin in the lower stream of the Nakdong River Water System, and evaluated the areas vulnerable to nonpoint pollution by subwatershed according to the TOPSIS(Technique for Order of Preference by Similarity to Ideal Solution) method. The selection method consists of selection of evaluation factors, calculation of weights and selection of areas vulnerable to non-point pollution through evaluation factors and weights. The entropy method was used as the weight calculation method and TOPSIS, a multi-criteria decision making(MCDM) method was used as the evaluation method. Indicator data were collected as of 2018, and national pollution source survey data and national statistics were used. Most of the vulnerable watersheds were highly urbanized had a large number of residents and were evaluated as having a large land area among industrial facilities and site area rate. Through this study, it is necessary to approach a variety of weighting methodologies to assess the vulnerability of non-point pollution with high reliability, and scientific analysis of the factors that affect non-point pollution sources and consideration of the effects are necessary.

Tonality Design for Sound Quality Evaluation in Printer (프린터 음질평가를 위한 순음도 설계)

  • Kim, Eui-Youl;Lee, Young-Jun;Lee, Sang-Kwon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.4
    • /
    • pp.318-327
    • /
    • 2012
  • The operating sound radiated from a laser printer includes tonal noise components caused by the rotating mechanical parts such as gear, shaft, motor, fan, etc. The negative effects of the tonal noise components need to be considered in the process of developing a sound quality index for the quantitative evaluation of the emotional satisfaction in terms of psycho-acoustics. However, in a previous paper, it was confirmed that the Aures tonality did not have enough correlation with the results of jury evaluation. The sound quality index based on loudness, articulation index, fluctuation strength has a little problem in considering the effects of rotating mechanical parts on the sound quality. In this paper, to solve the tonality evaluation problem, the calculation algorithm of Aures tonality was investigated in detail to find the cause of decreasing the correlation. The new tonality evaluation model was proposed by modifying and optimizing the masking effect, loudness ratio, and shape of weighting curve based on the basic algorithm of Aures tonality, and applied to two kinds of operating sound groups in order to verify the usefulness of proposed model. As a result, it is confirmed that the proposed tonality evaluation model has enough correlation and usefulness for expressing the tonalness in the operating sounds of laser printers. In the following paper, this results will be used to model the sound quality index as the input data by using the classification algorithm.

An analytical model for assessing soft rock tunnel collapse risk and its engineering application

  • Xue, Yiguo;Li, Xin;Li, Guangkun;Qiu, Daohong;Gong, Huimin;Kong, Fanmeng
    • Geomechanics and Engineering
    • /
    • v.23 no.5
    • /
    • pp.441-454
    • /
    • 2020
  • The tunnel collapse, large deformation of surrounding rock, water and mud inrush are the major geological disasters in soft rock tunnel construction. Among them, tunnel collapse has the most serious impact on tunnel construction. Current research backed theories have certain limitations in identifying the collapse risk of soft rock tunnels. Examining the Zhengwan high-speed railway tunnel, eight soft rock tunnel collapse influencing factors were selected, and the combination of indicator weights based on the analytic hierarchy process and entropy weighting methods was obtained. The results show that the groundwater condition and the integrity of the rock mass are the main influencing factors leading to a soft rock tunnel collapse. A comprehensive fuzzy evaluation model for the collapse risk of soft rock tunnels is being proposed, and the real-time collapse risk assessment of the Zhengwan tunnel is being carried out. The results obtained via the fuzzy evaluation model agree well with the actual situation. A tunnel section evaluated to have an extremely high collapse risk and experienced a local collapse during excavation, verifying the feasibility of the collapse risk evaluation model. The collapse risk evaluation model proposed in this paper has been demonstrated to be a promising and innovative method for the evaluation of the collapse risk of soft rock tunnels, leading to safer construction.