• Title/Summary/Keyword: Entropy Frequency

Search Result 129, Processing Time 0.029 seconds

An Improved Cross Entropy-Based Frequency-Domain Spectrum Sensing (Cross Entropy 기반의 주파수 영역에서 스펙트럼 센싱 성능 개선)

  • Ahmed, Tasmia;Gu, Junrong;Jang, Sung-Jeen;Kim, Jae-Moung
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.3
    • /
    • pp.50-59
    • /
    • 2011
  • In this paper, we present a spectrum sensing method by exploiting the relationship of previous and current detected data sets in frequency domain. Most of the traditional spectrum sensing methods only consider the current detected data sets of Primary User (PU). Previous state of PU is a kind of conditional probability that strengthens the reliability of the detector. By considering the relationship of the previous and current spectrum sensing, cross entropy-based spectrum sensing is proposed to detect PU signal more effectively, which has a strengthened performance and is robust. When previous detected signal is noise, the discriminating ability of cross entropy-based spectrum sensing is no better than conventional entropy-based spectrum sensing. To address this problem, we propose an improved cross entropy-based frequency-domain spectrum sensing. Regarding the spectrum sensing scheme, we have derived that the proposed method is superior to the cross entropy-based spectrum sensing. We proceed a comparison of the proposed method with the up-to-date entropy-based spectrum sensing in frequency-domain. The simulation results demonstrate the performance improvement of the proposed spectrum sensing method.

Voice Activity Detection Based on Entropy in Noisy Car Environment (차량 잡음 환경에서 엔트로피 기반의 음성 구간 검출)

  • Roh, Yong-Wan;Lee, Kue-Bum;Lee, Woo-Seok;Hong, Kwang-Seok
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.9 no.2
    • /
    • pp.121-128
    • /
    • 2008
  • Accurate voice activity detection have a great impact on performance of speech applications including speech recognition, speech coding, and speech communication. In this paper, we propose methods for voice activity detection that can adapt to various car noise situations during driving. Existing voice activity detection used various method such as time energy, frequency energy, zero crossing rate, and spectral entropy that have a weak point of rapid. decline performance in noisy environments. In this paper, the approach is based on existing spectral entropy for VAD that we propose voice activity detection method using MFB(Met-frequency filter banks) spectral entropy, gradient FFT(Fast Fourier Transform) spectral entropy. and gradient MFB spectral entropy. FFT multiplied by Mel-scale is MFB and Mel-scale is non linear scale when human sound perception reflects characteristic of speech. Proposed MFB spectral entropy method clearly improve the ability to discriminate between speech and non-speech for various in noisy car environments that achieves 93.21% accuracy as a result of experiments. Compared to the spectral entropy method, the proposed voice activity detection gives an average improvement in the correct detection rate of more than 3.2%.

  • PDF

The Selection of the Optimal Gator Wavelet Shape Factor Using the Shannon Entropy Concept (Shannon 엔트로피 개념을 이용한 가보 웨이블렛 최적 형상의 선정)

  • Hong, Jin-Chul;Kim, Yoon-Young
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.176-181
    • /
    • 2002
  • The continuous Gabor wavelet transform (GWT) has been utilized as a useful time-frequency analysis tool to identify the rapidly-varying characteristics of some wave signals. In the application of GWT, it is important to select the Gabor wavelet with the optimal shape factor by which the time-frequency distribution of a signal can be accurately estimated. To find the signal-dependent optimal Gabor wavelet shape factor, the notion of the Shannon entropy which mesures the extent of signal energy concentration in the time-frequency plane is employed. To verify the validity of the present entropy-based scheme, we have applied it to the time-frequency analysis of a set of elastic bending wave signals generated by an impact in a solid cylinder.

  • PDF

Speech Emotion Recognition Based on GMM Using FFT and MFB Spectral Entropy (FFT와 MFB Spectral Entropy를 이용한 GMM 기반의 감정인식)

  • Lee, Woo-Seok;Roh, Yong-Wan;Hong, Hwang-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2008.04a
    • /
    • pp.99-100
    • /
    • 2008
  • This paper proposes a Gaussian Mixture Model (GMM) - based speech emotion recognition methods using four feature parameters; 1) Fast Fourier Transform(FFT) spectral entropy, 2) delta FFT spectral entropy, 3) Mel-frequency Filter Bank (MFB) spectral entropy, and 4) delta MFB spectral entropy. In addition, we use four emotions in a speech database including anger, sadness, happiness, and neutrality. We perform speech emotion recognition experiments using each pre-defined emotion and gender. The experimental results show that the proposed emotion recognition using FFT spectral-based entropy and MFB spectral-based entropy performs better than existing emotion recognition based on GMM using energy, Zero Crossing Rate (ZCR), Linear Prediction Coefficient (LPC), and pitch parameters. In experimental Results, we attained a maximum recognition rate of 75.1% when we used MFB spectral entropy and delta MFB spectral entropy.

  • PDF

Application of Subarray Averaging and Entropy Minimization Algorithm to Stepped-Frequency ISAR Autofocus (부배열 평균과 엔트로피 최소화 기법을 이용한 stepped-frequency ISAR 자동초점 기법 성능 향상 연구)

  • Jeong, Ho-Ryung;Kim, Kyung-Tae;Lee, Dong-Han;Seo, Du-Chun;Song, Jeong-Heon;Choi, Myung-Jin;Lim, Hyo-Suk
    • Proceedings of the KSRS Conference
    • /
    • 2008.03a
    • /
    • pp.158-163
    • /
    • 2008
  • In inverse synthetic aperture radar (ISAR) imaging, An ISAR autofocusing algorithm is essential to obtain well-focused ISAR images. Traditional methods have relied on the approximation that the phase error due to target motion is a function of the cross-range dimension only. However, in the stepped-frequency radar system, it tends to become a two-dimensional function of both down-range and cross-range, especially when target's movement is very fast and the pulse repetition frequency (PRF) is low. In order to remove the phase error along down-range, this paper proposes a method called SAEM (subarray averaging and entropy minimization) [1] that uses a subarray averaging concept in conjunction with the entropy cost function in order to find target motion parameters, and a novel 2-D optimization technique with the inherent properties of the proposed entropy-based cost function. A well-focused ISAR image can be obtained from the combination of the proposed method and a traditional autofocus algorithm that removes the phase error along the cross-range dimension. The effectiveness of this method is illustrated and analyzed with simulated targets comprised of point scatters.

  • PDF

Maximum Entropy Spectral Analysis for Nonstationary Random Response of Vehicle (최대 엔트로피 스펙트럼 방법을 이용한 차량의 과도 응답 특성 해석)

  • Zhang, Li Jun;Lee, Chang-Myung;Wang, Yan Song
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.8
    • /
    • pp.589-597
    • /
    • 2002
  • In this paper the nonstationary response of accelerating vehicle is firstly obtained by using nonstationary road roughness model in time domain. To get the result of nonstationary response in frequency domain, the maximum entropy method is used for Processing nonstationary response of vehicle in frequency domain. The three-dimensional transient maximum entropy spectrum (MES) of response is given.

Voice Activity Detection Based on Signal Energy and Entropy-difference in Noisy Environments (엔트로피 차와 신호의 에너지에 기반한 잡음환경에서의 음성검출)

  • Ha, Dong-Gyung;Cho, Seok-Je;Jin, Gang-Gyoo;Shin, Ok-Keun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.5
    • /
    • pp.768-774
    • /
    • 2008
  • In many areas of speech signal processing such as automatic speech recognition and packet based voice communication technique, VAD (voice activity detection) plays an important role in the performance of the overall system. In this paper, we present a new feature parameter for VAD which is the product of energy of the signal and the difference of two types of entropies. For this end, we first define a Mel filter-bank based entropy and calculate its difference from the conventional entropy in frequency domain. The difference is then multiplied by the spectral energy of the signal to yield the final feature parameter which we call PEED (product of energy and entropy difference). Through experiments. we could verify that the proposed VAD parameter is more efficient than the conventional spectral entropy based parameter in various SNRs and noisy environments.

The Selection of the Optimal Gabor Wavelet Shape Factor Using the Shannon Entropy Concept (Shannon 엔트로피 개념을 이용한 가보 웨이블렛 최적 형상의 선정)

  • Hong, Jin-Chul;Kim, Yoon-Young
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.324.1-324
    • /
    • 2002
  • The continuous Gabor wavelet transform (GWT) has been utilized as a useful time-frequency analysis tool to identify the rapidly-varying characteristics of some wave signals. In the application of GWT, it is important to select the Gabor wavelet with the optimal shape factor by which the time-frequency distribution of a signal can be accurately estimated. To find the signal-dependent optimal Gator wavelet shape factor, the notion of the Shannon entropy which measures the extent of signal energy concentration in the time-frequency plane is employed. (omitted)

  • PDF

Characterization of Surface Roughness Using the Concept of Entropy in Machining (엔트로피 개념을 이용한 절삭가공에서 표면거칠기의 특성화)

  • 최기홍;최기상
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.12
    • /
    • pp.3118-3126
    • /
    • 1994
  • This paper describes the use of the concept of (relative) entropy for effective characterization of the amplitude and the frequency distributions of the surface profile formed in machining operation. For this purpose, a theoretical model for surface texture formation in turning operation is developed first. Then, the concept of (relative) entropy is reviewed and its effectiveness is examined based on the simulation and experimental results. The results also suggest that under random tool vibration the effect of the geometrical factors on the surface texture formation can be successfully decomposed and therefore, identified by applying the concept of (relative) entropy.

Recurrence plot entropy for machine defect severity assessment

  • Yan, Ruqiang;Qian, Yuning;Huang, Zhoudi;Gao, Robert X.
    • Smart Structures and Systems
    • /
    • v.11 no.3
    • /
    • pp.299-314
    • /
    • 2013
  • This paper presents a nonlinear time series analysis technique for evaluating machine defect severity, based on the Recurrence Plot (RP) entropy. The RP entropy is calculated from the probability distribution of the diagonal line length in the recurrence plot, which graphically depicts a system's dynamics and provides a global picture of the autocorrelation in a time series over all available time-scales. Results of experimental studies conducted on a spindle-bearing test bed have demonstrated that, as the working condition of the bearing deteriorates due to the initiation and/or progression of structural damages, the frequency information contained in the vibration signal becomes increasingly complex, leading to the increase of the RP entropy. As a result, RP entropy can serve as an effective indicator for defect severity assessment of rolling bearings.