• Title/Summary/Keyword: Entrapping

Search Result 58, Processing Time 0.026 seconds

Evaluation Methods and Design for Bioartificial Liver Based on Perfusion Model

  • Park Yueng Guen;Ryu Hwa-Won
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.1
    • /
    • pp.9-15
    • /
    • 2005
  • A bioartificial liver (BAL) is a medical device entrapping living hepatocytes or immortalized cells derived from hepatocytes. Many efforts have already been made to maintain the functions of the hepatocytes in a BAL device over a long term. However, there is still some uncertainty as to their efficacy. and their limitations are unclear. Therefore, it is important to quantitatively evaluate the metabolic functions of a BAL. In previous studies on in vitro BAL devices, two test methods, an initial bolus loading and constant-rate infusion plus initial bolus loading, were theoretically carried out to obtain physiologic data on drugs. However, in the current study, the same two methods were used as a perfusion model and derived the same clearance characterized by an interrelationship between the perfusate flow rate and intrinsic clearance. The interrelationship indicated that the CL increased with an increasing perfusate flow rate and approached its maximum value, i.e. intrinsic clearance. In addition, to set up an in vivo BAL system, the toxic plateau levels in the BAL system were calculated for both series and parallel circuit models. The series model had a lower plateau level than the parellel model. The difference in the toxic plateau levels between the parallel and series models increased with an increasing number of BAL cartridges.

Determination of Optimum Aggregates of Porcine Hepatocytes As a Cell Source of a Bioartificial Liver

  • Lee, Doo-Hoon;Lee, Ji-Hyun;Choi, Jeong-Eun;Kim, Young-Jin;Kim, Sung-Koo;Park, Jung-Keug
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.5
    • /
    • pp.735-739
    • /
    • 2002
  • Large quantities of porcine hepatocyte aggregates with various degrees of aggregation (DA) could be obtained by controlling the suspension periods (0,9,24, and 48 h), and by entrapping the hepatocyte aggregates in model materials of encapsulation such as Ca-alginate and type-I collagen gels. The effects of DA on liver-specific functions of hepatocytes were evaluated in order to obtain optimum DA for the cell source of bioartificial liver (BAL) systems. Irregular rugged aggregates (size $75 \pm 28$ $\mu\textrm{m}$) farmed by 24 h of suspension culturing showed peak viability and hepatic functions such as ammonia removal and albumin secretion in the two types of entrapment systems, thus offering themselves as a stable cell source of a BAL system for hepatic functions and scale-up.

CFD simulation of compressible two-phase sloshing flow in a LNG tank

  • Chen, Hamn-Ching
    • Ocean Systems Engineering
    • /
    • v.1 no.1
    • /
    • pp.31-57
    • /
    • 2011
  • Impact pressure due to sloshing is of great concern for the ship owners, designers and builders of the LNG carriers regarding the safety of LNG containment system and hull structure. Sloshing of LNG in partially filled tank has been an active area of research with numerous experimental and numerical investigations over the past decade. In order to accurately predict the sloshing impact load, a new numerical method was developed for accurate resolution of violent sloshing flow inside a three-dimensional LNG tank including wave breaking, jet formation, gas entrapping and liquid-gas interaction. The sloshing flow inside a membrane-type LNG tank is simulated numerically using the Finite-Analytic Navier-Stokes (FANS) method. The governing equations for two-phase air and water flows are formulated in curvilinear coordinate system and discretized using the finite-analytic method on a non-staggered grid. Simulations were performed for LNG tank in transverse and longitudinal motions including horizontal, vertical, and rotational motions. The predicted impact pressures were compared with the corresponding experimental data. The validation results clearly illustrate the capability of the present two-phase FANS method for accurate prediction of impact pressure in sloshing LNG tank including violent free surface motion, three-dimensional instability and air trapping effects.

Thin Micro-Porous Scaffold Layer on Metallic Substrate (금속기질에 앓은 마이크로 다공질 스케폴드 코팅에 관한 연구)

  • Sin, D.C.;Miao, X.;Kim, W.C.
    • Journal of Power System Engineering
    • /
    • v.14 no.5
    • /
    • pp.41-47
    • /
    • 2010
  • 티타늄과 티타늄 합금은 재료적 특이성 때문에 심장 혈관 임플란트에서 일반적으로 사용되어 왔다. 일찍이 적용된 예로는 인공심장판막, 심박조율기의 보호케이스, 혈액 순환 장치 등이 있다. 하지만 물질유도혈전증(Material-induced thrombosis)은 혈전폐색에 의해 기인한 기능 손실로 심장혈관 임플란트 장치의 주된 합병증으로 존재하고 있으며, 심장혈관 임플란트의 혈전유전자는 심장혈관장치의 발달에 주된 난관 중 하나로 남아있다. 그리고 텍스처 혈액 접합 물질(Textured blood-contacting material)은 1960년대 초반 이후부터 혈액순환 보조 장치의 임상실험에 사용되고 있다. 접합 물질에 내장된 텍스처 섬유조직 표면은 형성, 성장, 안정적 부착, 생물학적 내벽(neointimal layer) 등 유도 혈액(entrapping blood) 성분에 의해 형성된다. 공동(cavity) 형상의 용해 가능한 미립자를 사용하는 SCPL법(Solvent casting/particulate leaching method)은 티타늄 기질 이전에 형성된 폴리우레탄 위에 텍스처(texture)를 생성하기 위해 사용되었다. 또한 콜라겐의 부동화(不動化)에 의한 공동(cavity)은 혈액 접합면에 잔존하기 위한 내피세포를 고정할 수 있는 효과가 있다. cpTi로 층화된 PU 기소공성(microporous)은 구조적 특성과 혈전증 감소를 위한 생물학적 내벽 사용의 잠재성을 평가하기 위한 세포 공동체 실험을 통해서 평가되었다.

Development of the Selection Technique of Entrapment Materials for the Viability Improvement of Entrapped Bifidobacteria (포집된 Bifidobacteria의 생존력 증대를 위한 세포포집재료의 선별기술 개발)

  • 이기용;우창재;배기성;허태련
    • KSBB Journal
    • /
    • v.15 no.1
    • /
    • pp.1-8
    • /
    • 2000
  • The diffusion effect of simulated gastric juices into the various alginate vessel containing each biopolymer such as 0.3% soluble starch, whey, corn starch, agar, locust bean gum, guar gum, gum arabic, pectin, gelatin and 0.15% xanthan gum was tested by measuring the change of pH in the vessel. The degree of viability of bifidobacteria entrapped in each bead containing biopolymers was corresponded with the degree of diffusion inhibition of hydrogen into the each vessel. Therefore, The determination of diffusion inhibition of simulated gastric juices into the various vessel by measuring the change of pH in the vessel may be effectively used as the simple method to select the optimal entrapment lattice for the improvement of bifidobacteria viability. Bifidobacteria entrapped in alginate bead containing 0.15% xanthan gum whose lattice showed the lowest hydrogen diffusion were more significantly tolerant against bile salts and hydrogen peroxide than untrapped bifidobacteria. It was also observed that the viability of bifidobacteria entrapped in bead was nto nearly changed in milk adjusted pH 4.5 with organic adids at $4^{\circ}C$ for 10 days. Therefore, use of alginate containing 0.15% xanthan gum as a cell matrix for entrapping bifidobacteria was expected to improve the viability of bididobacteria in fermented milk products and develop the high value-added products.

  • PDF

Effect of the Shape and Size of Quorum-Quenching Media on Biofouling Control in Membrane Bioreactors for Wastewater TreatmentS

  • Lee, Seonki;Lee, Sang Hyun;Lee, Kibaek;Kwon, Hyeokpil;Nahm, Chang Hyun;Lee, Chung-Hak;Park, Pyung-Kyu;Choo, Kwang-Ho;Lee, Jung-Kee;Oh, Hyun-Suk
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.10
    • /
    • pp.1746-1754
    • /
    • 2016
  • Recently, spherical beads entrapping quorum quenching (QQ) bacteria have been reported as effective moving QQ-media for biofouling control in MBRs for wastewater treatment owing to their combined effects of biological (i.e., quorum quenching) and physical washing. Taking into account both the mass transfer of signal molecules through the QQ-medium and collision efficiencies of the QQ-medium against the filtration membranes in a bioreactor, a cylindrical medium (QQ-cylinder) was developed as a new shape of moving QQ-medium. The QQ-cylinders were compared with previous QQ-beads in terms of the QQ activity and the physical washing effect under identical loading volumes of each medium in batch tests. It was found that the QQ activity of a QQ-medium was highly dependent on its specific surface area, regardless of the shape of the medium. In contrast, the physical washing effect of a QQ-medium was greatly affected by its geometric structure. The enhanced anti-biofouling property of the QQ-cylinders relative to QQ-beads was confirmed in a continuous laboratory-scale MBR with a flat-sheet membrane module.

Studies on Naringinase Produced from Aspergillus nidulance -Part III. Preparation and Properties of Immobilized Naringinase- (Aspergillus nidulance가 생산하는 Naringinase에 관한 연구 -제 3 보 고정화(固定化) Naringinase의 제조 및 그 성질-)

  • Bai, Dong-Hoon;Pyun, Yu-Ryang;Yu, Ju-Hyun
    • Korean Journal of Food Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.209-214
    • /
    • 1978
  • Naringinase produced from Aspergillus nidulans was immobilized in acrylamide gel by the entrapping method and its characteristics were studied. Optimum acrylamide concentration was 10%, but N.N'-methylene bisacrylamide concentration had no influence on the final enzyme gel activity. The suitable amount of enzyme dissolved in the polymerization reaction mixture was 126 units/ml. Optimum pH of immobilized enzyme was 5.0 which was the same as that of free enzyme. However, immobilized enzyme showed a higher optumum reaction temperature, markedly increased pH and temperature stability. In a packed-column reactor, the observed reaction rate was increased proportionally to flow rate up to 5ml/min., but independent above 6ml/min.. Activation energy of the immobilized enzyme was 13.01 Kcal/mole, and the energy required for the thermal inactivation was 39.4 Kcal/mole. The apparent Km for 100 mesh gel was $7.23{\times}10^{-3}$ mole.

  • PDF

Enhancing the Physical Properties and Lifespan of Bacterial Quorum Quenching Media through Combination of Ionic Cross-Linking and Dehydration

  • Lee, Sang Hyun;Lee, Seonki;Lee, Kibaek;Nahm, Chang Hyun;Jo, Sung-Jun;Lee, Jaewoo;Choo, Kwang-Ho;Lee, Jung-Kee;Lee, Chung-Hak;Park, Pyung-Kyu
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.3
    • /
    • pp.552-560
    • /
    • 2017
  • Quorum quenching (QQ) bacteria entrapped in a polymeric composite hydrogel (QQ medium) have been successfully applied in membrane bioreactors (MBRs) for effective biofouling control. However, in order to bring QQ technology closer to practice, the physical strength and lifetime of QQ media should be improved. In this study, enforcement of physical strength, as well as an extension of the lifetime of a previously reported QQ bacteria entrapping hollow cylinder (QQ-HC), was sought by adding a dehydration procedure following the cross-linking of the polymeric hydrogel by inorganic compounds like $Ca^{2+}$ and boric acid. Such prepared medium demonstrated enhanced physical strength possibly through an increased degree of physical cross-linking. As a result, a longer lifetime of QQ-HCs was confirmed, which led to improved biofouling mitigation performance of QQ-HC in an MBR. Furthermore, QQ-HCs stored under dehydrated condition showed higher QQ activity when the storage time lasted more than 90 days owing to enhanced cell viability. In addition, the dormant QQ activity after the dehydration step could be easily restored through reactivation with real wastewater, and the reduced weight of the dehydrated media is expected to make handling and transportation of QQ media highly convenient and economical in practice.

Mitigation of Membrane Biofouling in MBR Using a Cellulolytic Bacterium, Undibacterium sp. DM-1, Isolated from Activated Sludge

  • Nahm, Chang Hyun;Lee, Seonki;Lee, Sang Hyun;Lee, Kibaek;Lee, Jaewoo;Kwon, Hyeokpil;Choo, Kwang-Ho;Lee, Jung-Kee;Jang, Jae Young;Lee, Chung-Hak;Park, Pyung-Kyu
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.3
    • /
    • pp.573-583
    • /
    • 2017
  • Biofilm formation on the membrane surface results in the loss of permeability in membrane bioreactors (MBRs) for wastewater treatment. Studies have revealed that cellulose is not only produced by a number of bacterial species but also plays a key role during formation of their biofilm. Hence, in this study, cellulase was introduced to a MBR as a cellulose-induced biofilm control strategy. For practical application of cellulase to MBR, a cellulolytic (i.e., cellulase-producing) bacterium, Undibacterium sp. DM-1, was isolated from a lab-scale MBR for wastewater treatment. Prior to its application to MBR, it was confirmed that the cell-free supernatant of DM-1 was capable of inhibiting biofilm formation and of detaching the mature biofilm of activated sludge and cellulose-producing bacteria. This suggested that cellulase could be an effective anti-biofouling agent for MBRs used in wastewater treatment. Undibacterium sp. DM-1-entrapping beads (i.e., cellulolytic-beads) were applied to a continuous MBR to mitigate membrane biofouling 2.2-fold, compared with an MBR with vacant-beads as a control. Subsequent analysis of the cellulose content in the biofilm formed on the membrane surface revealed that this mitigation was associated with an approximately 30% reduction in cellulose by cellulolytic-beads in MBR.

Simulation of Pressure Oscillation in Water Caused by the Compressibility of Entrapped Air in Dam Break Flow (댐 붕괴 유동에서 갇힌 공기의 압축성에 의한 물의 압력 진동 모사)

  • Shin, Sangmook
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.1
    • /
    • pp.56-65
    • /
    • 2018
  • Pressure oscillation caused by the compressibility of entrapped air in dam break flow is analyzed using an open source code, which is a two-phase compressible code for non-isothermal immiscible fluids. Since compressible flows are computed based on a pressure-based method, the code can handle the equation of state of barotropic fluid, which is virtually incompressible. The computed time variation of pressure is compared with other experimental and computational results. The present result shows good agreements with other results until the air is entrapped. As the entrapped air bubbles pulsate, pressure oscillations are predicted and the pressure oscillations damp out quickly. Although the compressibility parameter of water has been varied for a wide range, it has no effects on the computed results, because the present equation of state for water is so close to that of incompressible fluid. Grid independency test for computed time variation of pressure shows that all results predict similar period of pressure oscillation and quick damping out of the oscillation, even though the amplitude of pressure oscillation is sensitive to the velocity field at the moment of the entrapping. It is observed that as pressure inside the entrapped air changes quickly, the pressure field in the neighboring water adjusts instantly, because the sound of speed is much higher in water. It is confirmed that the period of pressure oscillation is dominated by the added mass of neighboring water. It is found that the temperature oscillation of the entrapped air is critical to the quick damping out of the oscillations, due to the fact that the time averaged temperature inside the entrapped air is higher than that of surrounding water, which is almost constant.