• Title/Summary/Keyword: Enthalpy of activation

Search Result 117, Processing Time 0.027 seconds

Kinetics and Mechanism of the Pyridinolysis of 1,2-Phenylene Phosphorochloridate in Acetonitrile

  • Barai, Hasi Rani;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.1
    • /
    • pp.270-274
    • /
    • 2012
  • The nucleophilic substitution reactions of 1,2-phenylene phosphorochloridate (1c) with X-pyridines are investigated kinetically in acetonitrile at $-25.0^{\circ}C$. The free energy correlations for substituent X variations in the nucleophiles exhibit biphasic concave upwards with a break point at X = 3-Ph. The pyridinolysis rate of 1c with a cyclic five-membered ring is $2.70{\times}10^5$ times faster than its acyclic counterpart (1a: phenyl ethyl chlorophosphate) because of great positive value of the entropy of activation of 1c (${\Delta}S^{\neq}$ = +26 eu) compared to negative value of 1a (${\Delta}S^{\neq}$= -24 eu) over considerably unfavorable enthalpy of activation of 1c (${\Delta}H^{\neq}=20.5kcal\;mol^{-1}$) compared to 1a (${\Delta}H^{\neq}=12.7kcal\;mol^{-1}$). Great enthalpy and positive entropy of activation are ascribed to sterically congested transition state (TS) and solvent structure breaking in the TS. A concerted mechanism involving a change of nucleophilic attacking direction from a frontside attack with the strongly basic pyridines to a backside attack with the weakly basic pyridines is proposed on the basis of greater selectivity parameters (${\rho}_X$ = -1.99 and ${\beta}_X$ = 0.41) with the strongly basic pyridines compared to those (${\rho}_X$ = -0.42 and ${\beta}_X$ = 0.07) with the weakly basic pyridines.

Kinetics and Mechanism of the Pyridinolysis of Ethylene Phosphorochloridate in Acetonitrile

  • Barai, Hasi Rani;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.12
    • /
    • pp.4347-4351
    • /
    • 2011
  • The nucleophilic substitution reactions of ethylene phosphorochloridate (2) with X-pyridines are investigated kinetically in acetonitrile at $-20.0^{\circ}C$. The free energy correlations for substituent X variations in the nucleophiles exhibit biphasic concave upwards with a break point at X = 3-Ph. Unusual positive ${\rho}_X$ (= +2.49) and negative ${\beta}_X$ (= -0.41) values are obtained with the weakly basic pyridines, and rationalized by the isokinetic relationship with isokinetic temperature at $t_{ISOKINETIC}=6.6^{\circ}C$. The pyridinolysis rate of 2 with a cyclic five-membered ring is forty thousand times faster than its acyclic counterpart (3: diethyl chlorophosphate) because of great positive value of the entropy of activation of 2 (${\Delta}S^{\neq}$ = +49.2 eu) compared to negative value of 3 (${\Delta}S^{\neq}$ = -44.1 eu) over considerably unfavorable enthalpy of activation of 2 (${\Delta}H^{\neq}=28.4\;kcal\;mol^{-1}$) compared to 3 (${\Delta}H^{\neq}=6.3\;kcal\;mol^{-1}$). Great enthalpy and positive entropy of activation are ascribed to sterically congested transition state (TS) and solvent structure breaking in the TS. A concerted mechanism involving a change of nucleophilic attacking direction from a frontside attack with the strongly basic pyridines to a backside attack with the weakly basic pyridines is proposed.

Kinetics and Mechanism of the Anilinolysis of (2R,4R,5S)-(+)-2-Chloro-3,4-dimethyl -5-phenyl-1,3,2-oxazaphospholidine 2-Sulfide in Acetonitrile

  • Barai, Hasi Rani;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.1037-1041
    • /
    • 2012
  • The nucleophilic substitution reactions of (2R,4R,5S)-(+)-2-chloro-3,4-dimethyl-5-phenyl-1,3,2-oxazaphospholidine 2-sulfide (3) with substituted anilines ($XC_6H_4NH_2$) and deuterated anilines ($XC_6H_4ND_2$) are investigated kinetically in acetonitrile at $5.0^{\circ}C$. The anilinolysis rate of 3 involving a cyclic five-membered ring is considerably fast because of small negative value of the entropy of activation (${\Delta}S^\neq=-2cal\;mol^{-1}\;K^{-1}$) over considerably unfavorable enthalpy of activation (${\Delta}H^\neq=18.0\;kcal\;mol^{-1}$). Great enthalpy and small negative entropy of activation are ascribed to sterically congested transition state (TS) and bulk solvent structure breaking in the TS. A concerted $S_N2$ mechanism with a backside nucleophilic attack is proposed on the basis of the secondary inverse deuterium kinetic isotope effects, $k_H/k_D$ < 1.

Effect of Acetophenone on the Rate of Wool Dyeing (아세토페논이 양모의 염색속도에 미치는 영향)

  • Dho, Seong-Kook
    • Fashion & Textile Research Journal
    • /
    • v.10 no.3
    • /
    • pp.394-398
    • /
    • 2008
  • One of barely water soluble ketones, acetophenone (AP) was dissolved in methanol and then was mixed with aqueous solution of C. I. Red Acid 114. In order to find out the role of AP in the dyeing process the rate constants and the activation parameters were calculated. The rate for the dyeing with AP was faster than that without it. Because of the reduced temperature dependence by AP the activation energy ($E_a$) for the dyeing with AP was smaller than that without it. With increasing temperature the activation enthalpy (${\Delta}H^*$), the activation entropy (${\Delta}S^*$), and the activation free energy ($G^*$) decreased, which was more noticeable in dyeing with AP. The rate constants and the activation parameters agreed well with the results from the previous reports that the ability of AP to increase disaggregation of dye molecules, loosening the wool fiber, and wickabilty of dyeing solution made it possible to dye wool fiber at low temperature.

Dehydrogenation of Ethylalcohol Catalyzed by Alcoholdehydrogenase Under High Pressure

  • Jee Jong-Gi;Shin Jin-Young;Hwang Jung-Ui
    • Bulletin of the Korean Chemical Society
    • /
    • v.10 no.1
    • /
    • pp.50-57
    • /
    • 1989
  • A pressure effect of the dehydrogenation of ethylalcohol catalyzed by alcoholdehydrogenase was observed in Tris-HCl buffer, pH 8.8 from $25^{\circ}C$ to $35^{\circ}C$ under high pressure system by using our new theory. The theory makes it possible for us to obtain all rate and equilibrium constants for each step of all enzymatic reaction with a single intermediate. We had enthalpy and volume profiles of the dehydrogenation to suggest a detail and reasonable mechanism of the reaction. In these profiles, both enthalpy and entropy of the reaction are positive and their values decrease with enhancing pressure. It means that the first step is endothermic reaction, and its strength decrease with elevating pressure. At the same time, all activation entropies have large negative values, which prove that not only a ternary complex has a more ordered structure at transition state, but also water molecules make a iceberg close by the activated complex. In addition to this fact, the first and second step equilibrium states are controlled by enthalpy. The first step kinetic state is controlled by enthalpy but the second step kinetic state is controlled by entropy.

The effect of Pd film evaporation condition on the kinetics of hydrogen absorption-desorption (Pd 박막 시료의 제작 조건이 수소 흡수-방출 동역학에 미치는 영향에 관한 연구)

  • Um, Dae-hyun;Yoo, Joung-gouk;Cho, Young-sin
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.9 no.3
    • /
    • pp.127-133
    • /
    • 1998
  • This study was conducted to know to the effect of Pd film($180{\AA}$ thick) evaporation condition on the kinetics of hydrogen absorption-desorption. The activation energy of the forward reaction, the activation energy of the backward reaction, and the enthalpy were calculated by hydrogen absorption-desorption in ${\alpha}$-phase.($25{\sim}50^{\circ}C$ temperature) The activation energy of the forward reaction of Pd film, which is made at room temperature, is $6.4{\pm}0.4$ kcal/mol H and of the backward reaction $8.4{\pm}1.5$ kcal/mol H, which yields the reaction enthalpy -2kcal/mol H. The activation energy of forward reaction of Pd film, which is made at $300^{\circ}C$, is $-0.18{\pm}0.61$ kcal/mol H and of the backward reaction $-0.17{\pm}2.3$ kcal/mol H. The sample of $300^{\circ}C$ is more stable than the sample of room temperature in its struciural compactness and resistance value but standard error of result of $300^{\circ}C$ sample is higher than sample of room temperature do.

  • PDF

Kinetic Studies for the Reaction of p-Methylphenacyl Arenesulfonates with Pyridine under High Pressures (고압하에서 p-Methylphenacyl Arenesulfonate와 피리딘과의 반응메카니즘)

  • Yoh Soo-Dong;Park Heon-Young;Park Jong-Hwan;Hwang Jeong-Ui
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.1
    • /
    • pp.64-69
    • /
    • 1991
  • Kinetics of the reaction of p-methylphenacyl arenesulfonates with pyridine in acetonitrile were investigated by an electric conductivity method at 1∼2000 bars and 35∼55$^{\circ}C$. The rates of these reactions were increased with raising pressures and temperatures. The activation enthalpy(${\Delta}H^{\neq}$), entropy(${\Delta}S^{\neq}$) and activation volume(${\Delta}V^{\neq}$) of the reaction were obtained with the rate constants. Activation volume and entropy were both negative valued, and activation enthalpy was positive. The acteivation parameters (${\Delta}V^{\neq}$ and ${\Delta}S^{\neq}$) were decreased with increasing pressure. From all of the above results, it was found that this reaction proceeds on the S$_N$2 in which C${\cdots}$O bond breaking is more advanced as pressure increases.

  • PDF

Molecular Theory of Plastic Deformation (II). Applications (소성변형의 분자론 (제2보). 응용)

  • Kim, Chang Hong;Ree Taikyue
    • Journal of the Korean Chemical Society
    • /
    • v.21 no.5
    • /
    • pp.339-352
    • /
    • 1977
  • The authors' theory developed in the preceding Paper 1 was applied to plastic deformation of ceramics, metals, alloys and single crystals. For polycrystalline substances, the flow mechanisms due to dislocation movement and grain boundary movement appear together or separately according to the experimental conditions whereas for single crystals, only the mechanism of dislocation movement appears. The parameters appearing in the flow equations $({\alpha}_{d1},\;1/{\beta}_{d1})and\;({\alpha}_{gj}/X_{gj},\;1/{\beta}_{gj})$ (j = 1 or 2), and the activation enthalpies ${\Delta}H_{k1}^{\neq}$ (k = d or g) were determined and tabulated. Here, the subscript d1 indicates the first kind of dislocation flow units and gj expresses the jth kind of grain boundary flow units. The predictions of the theory were compared with experiment with good agreement. Concerning the activation enthalpies, it was found that ${\Delta}H_{d1}^{\neq}$ 〉{\Delta}H_{g1}^{\neq}$ and that the former agrees with the activation enthalpy for bulk self-diffusion whereas the latter agrees with the activation enthalpy for grain boundary self-diffusion. These facts support the adequacy of the authors' theory which is considered as a generalized theory of plastic deformation.

  • PDF

The Interpratation of Dyeing Behavior of the Easily Dyeable Polyester Yarn under Atmospheric Pressure by Thermodynamic Parameters (열역학적 파라미터에 의한 상압가염형 폴리에스테르 섬유의 염색거동 해석)

  • 김태경;윤석한;신상엽;임용진;조규민
    • Textile Coloration and Finishing
    • /
    • v.14 no.1
    • /
    • pp.51-57
    • /
    • 2002
  • In the prior study, the mechanical properties and the dyeability of the easily dyeable polyester grim(EDY) were investigated. In this study, to interpret the dyeing behavior of EDY with C. I. Disperse Violet 1, the thermodynamic parameters of dyeing, such as the standard affinity, the heat of dyeing(the enthalpy change), the entropy change, the diffusion coefficient, and the activation energy of diffusion, were obtained from adsorption isotherms and dyeing rate at various temperatures and compared to these of regular polyester (REG-PET). The heat of dyeing(the enthalpy change) and the entropy change for EDY showed smaller negative values than those for REG-PET. This means that the dye molecules in the EDY are combined more loosely than in the REG-PET and that is due to the flexibility of polymer chains of EDY. The diffusion coefficients of C. I. Disperse Violet 1 into the EDY were larger than those for REG-PET, and the activation energy of diffusion on EDY was smaller than that on REG-PET.

Studies on Thermodynamics Characteristics of Fishes in Freezing Processes -II . Changes on Thermophysical Properties of Fishes in Heating and Freezing Processes- (동결과정 중의 어육의 열력학적 특성에 관한 연구 -II 가열 및 동결 과정 중의 어육의 열물성 변화-)

  • KIM Jeong-Han;CHOI Yeung-Joon;KIM Min-Yong;KONG Jai-Yul
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.24 no.5
    • /
    • pp.340-344
    • /
    • 1991
  • On heating and fleering food-stuffs, it is very important to obtain informations about thermophysical properties of fishes for designing of freezing and heating equipment and analyzing of physico-chemical reaction during storage. It is particularly necessary to measure denaturation enthalpy, temperature, latent heat of freezing, activation energy, enthalpy, entropy and free energy on freezing and heating rate. In this study, DSC was used to study effects of freezing and heating rate on thermophysical properties and denaturation temperature on scanning rate $2.5-10.0^{\circ}C/min$. On increasing scanning rate, denaturation temperature of protein and lipid incresed and freezing point, activation energy, enthalpy, entropy were decreased. In freezing process free energy of fishes were found to be $14.2-18.9 kcal/mol$.

  • PDF