• Title/Summary/Keyword: Enthalpy and entropy

Search Result 251, Processing Time 0.033 seconds

Adsorption Characteristics of Endo Ⅱ and Exo Ⅱ Purified from Trichoderma viride on Microcrystalline Celluloses with Different Surface Area

  • 김동원;정영규;장영훈;이재국
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.6
    • /
    • pp.498-503
    • /
    • 1995
  • The adsorption behaviors of two major components purified, endo Ⅱ and exo Ⅱ, from Trichoderma viride were investigated using microcrystalline cellulose with different specific surface area as substrates. Adsorption was found to apparently obey the Langmuir isotherm and the thermodynamic parameters, ΔH, ΔS, and ΔG, were calculated from adsorption equilibrium constant,K. The adsorption process was found to be endothermic and an adsorption entropy-controlled reaction. The amount of adsorption of cellulase components increased with specific surface area and decreased with temperature and varied with a change in composition of the cellulase components. The maximum synergistic degradation occurred at the specific weight ratio of the cellulase components at which the maximum affinity of cellulase components obtains. The adsorption entropy and enthalpy for respective enzyme system increased with specific surface area increase. The adsorption entropy was shown to have a larger value with enzyme mixture.

Thermal Inactivation of Horseradish Peroxidase for the Range of Temperatures $110^{\circ}{\sim}140^{\circ}C$ ($110^{\circ}C$ 이상에서의 Peroxidase의 열에 의한 불활성화)

  • Park, K.H.;Stahl, R.;Srimani, B.N.;Loncin, M.
    • Korean Journal of Food Science and Technology
    • /
    • v.9 no.2
    • /
    • pp.165-169
    • /
    • 1977
  • An apparatus for continuous sterilization of fluids in which heating-up and cooling time are negligible enabled determination of the kinetics of thermal inactivation of peroxidase for the range of temperatures $110{\sim}140^{\circ}C$. The enthalpy of activation was 146.4 kJ/mol; free energy of activation, 113kJ/mol; and the entropy of activation, 82.9J/mol.K. Comparisons of the experimental results with the thermal destruction time curves of microorganisms showed the possibility that the time required to inactivate peroxidase might be taken into account in evaluating thermal processes for commerciel HTST methods.

  • PDF

Kinetics and Mechanism of the Pyridinolysis of Ethylene Phosphorochloridate in Acetonitrile

  • Barai, Hasi Rani;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.12
    • /
    • pp.4347-4351
    • /
    • 2011
  • The nucleophilic substitution reactions of ethylene phosphorochloridate (2) with X-pyridines are investigated kinetically in acetonitrile at $-20.0^{\circ}C$. The free energy correlations for substituent X variations in the nucleophiles exhibit biphasic concave upwards with a break point at X = 3-Ph. Unusual positive ${\rho}_X$ (= +2.49) and negative ${\beta}_X$ (= -0.41) values are obtained with the weakly basic pyridines, and rationalized by the isokinetic relationship with isokinetic temperature at $t_{ISOKINETIC}=6.6^{\circ}C$. The pyridinolysis rate of 2 with a cyclic five-membered ring is forty thousand times faster than its acyclic counterpart (3: diethyl chlorophosphate) because of great positive value of the entropy of activation of 2 (${\Delta}S^{\neq}$ = +49.2 eu) compared to negative value of 3 (${\Delta}S^{\neq}$ = -44.1 eu) over considerably unfavorable enthalpy of activation of 2 (${\Delta}H^{\neq}=28.4\;kcal\;mol^{-1}$) compared to 3 (${\Delta}H^{\neq}=6.3\;kcal\;mol^{-1}$). Great enthalpy and positive entropy of activation are ascribed to sterically congested transition state (TS) and solvent structure breaking in the TS. A concerted mechanism involving a change of nucleophilic attacking direction from a frontside attack with the strongly basic pyridines to a backside attack with the weakly basic pyridines is proposed.

Adsorption of Non-degradable Eosin Y by Activated Carbon (활성탄에 의한 난분해성 염료인 Eosin Y의 흡착)

  • Lee, Min-Gyu;Kam, Sang-Kyu;Suh, Keun-Hak
    • Journal of Environmental Science International
    • /
    • v.21 no.5
    • /
    • pp.623-631
    • /
    • 2012
  • The adsorption behavior of Eosin Y on activated carbon (AC) in batch system was investigated. The adsorption isotherm could be well fitted by the Langmuir adsorption equation. The kinetics of adsorption followed the pseudo-second-order model. The temperature variation was used to evaluate the values of free energy (${\Delta}G^{\circ}$), enthalpy (${\Delta}H^{\circ}$) and entropy (${\Delta}S^{\circ}$). The positive value of enthalpy change ${\Delta}H^{\circ}$ for the process confirms the endothermic nature of the process and more favourable at higher temperature, the positive entropy of adsorption ${\Delta}S^{\circ}$ reflects the affinity of the AC material toward Eosin Y and the negative free energy values ${\Delta}G^{\circ}$ indicate that the adsorption process is spontaneous. With the increase of the amount of AC, removal efficiency of Eosin Y was increased, but adsorption capacity was decreased. And adsorption capacity was increased with the decrease of particle size. With the increase of the amount of AC, removal efficiency of Eosin Y was increased, but adsorption capacity was decreased. And adsorption capacity was increased with the decrease of particle size.

Kinetics and Mechanism of the Pyridinolysis of 1,2-Phenylene Phosphorochloridate in Acetonitrile

  • Barai, Hasi Rani;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.1
    • /
    • pp.270-274
    • /
    • 2012
  • The nucleophilic substitution reactions of 1,2-phenylene phosphorochloridate (1c) with X-pyridines are investigated kinetically in acetonitrile at $-25.0^{\circ}C$. The free energy correlations for substituent X variations in the nucleophiles exhibit biphasic concave upwards with a break point at X = 3-Ph. The pyridinolysis rate of 1c with a cyclic five-membered ring is $2.70{\times}10^5$ times faster than its acyclic counterpart (1a: phenyl ethyl chlorophosphate) because of great positive value of the entropy of activation of 1c (${\Delta}S^{\neq}$ = +26 eu) compared to negative value of 1a (${\Delta}S^{\neq}$= -24 eu) over considerably unfavorable enthalpy of activation of 1c (${\Delta}H^{\neq}=20.5kcal\;mol^{-1}$) compared to 1a (${\Delta}H^{\neq}=12.7kcal\;mol^{-1}$). Great enthalpy and positive entropy of activation are ascribed to sterically congested transition state (TS) and solvent structure breaking in the TS. A concerted mechanism involving a change of nucleophilic attacking direction from a frontside attack with the strongly basic pyridines to a backside attack with the weakly basic pyridines is proposed on the basis of greater selectivity parameters (${\rho}_X$ = -1.99 and ${\beta}_X$ = 0.41) with the strongly basic pyridines compared to those (${\rho}_X$ = -0.42 and ${\beta}_X$ = 0.07) with the weakly basic pyridines.

Kinetics and Mechanism of the Anilinolysis of (2R,4R,5S)-(+)-2-Chloro-3,4-dimethyl -5-phenyl-1,3,2-oxazaphospholidine 2-Sulfide in Acetonitrile

  • Barai, Hasi Rani;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.1037-1041
    • /
    • 2012
  • The nucleophilic substitution reactions of (2R,4R,5S)-(+)-2-chloro-3,4-dimethyl-5-phenyl-1,3,2-oxazaphospholidine 2-sulfide (3) with substituted anilines ($XC_6H_4NH_2$) and deuterated anilines ($XC_6H_4ND_2$) are investigated kinetically in acetonitrile at $5.0^{\circ}C$. The anilinolysis rate of 3 involving a cyclic five-membered ring is considerably fast because of small negative value of the entropy of activation (${\Delta}S^\neq=-2cal\;mol^{-1}\;K^{-1}$) over considerably unfavorable enthalpy of activation (${\Delta}H^\neq=18.0\;kcal\;mol^{-1}$). Great enthalpy and small negative entropy of activation are ascribed to sterically congested transition state (TS) and bulk solvent structure breaking in the TS. A concerted $S_N2$ mechanism with a backside nucleophilic attack is proposed on the basis of the secondary inverse deuterium kinetic isotope effects, $k_H/k_D$ < 1.

Thermodynamic Parameters of Complexation of Lanthanides by L-proline (Lanthanides-L-proline 착물의 형성에 관한 열역학적 연구)

  • Choi Im-Yeon;Kim Young-Inn;Choi Sung-Nak;Hyun Myung-Ho
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.1
    • /
    • pp.105-111
    • /
    • 1993
  • The stability constants for lanthanides complexes with optically active L-proline (1 : 1) were determined in aqueous solution in the ionic medium of 0.1 M $NaClO_4$ at 25$^{\circ}C$ using a pH titration method. The results show called "gadolinium break" between lighter and heavier lanthanides. The linear relation between the stability constant (log$\beta$1) and the pKa values of ligands indicates that L-proline acts as a bidentate ligand in the complexation. The thermodynamic parameters (${\Delta}H$ and ${\Delta}S$) were also determined using an enthalpy titration method at the same condition. The positive endothermic enthalpy change and positive entropy change clearly indicate that the driving force for the complexation is an entropy effect. The comparison of the thermodynamic parameters of L-proline complexes with anthranilate complexes supports the conclusion that the heterocyclic nitrogen atom and carboxylate of L-proline are involved in the chleate formation. The enthalpy values for L-proline are more positive than the ones for anthranilate complex. The difference in enthalpy change for the complex formation between L-proline complex and anthranilate complex is explained in terms of the basicity of the nitrogen donor atom in the ligand. The relatively large entropy change may be described by the extra dehydration related to the rigidity of L-proline ring.

  • PDF

Studies on Thermodynamics Characteristics of Fishes in Freezing Processes -II . Changes on Thermophysical Properties of Fishes in Heating and Freezing Processes- (동결과정 중의 어육의 열력학적 특성에 관한 연구 -II 가열 및 동결 과정 중의 어육의 열물성 변화-)

  • KIM Jeong-Han;CHOI Yeung-Joon;KIM Min-Yong;KONG Jai-Yul
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.24 no.5
    • /
    • pp.340-344
    • /
    • 1991
  • On heating and fleering food-stuffs, it is very important to obtain informations about thermophysical properties of fishes for designing of freezing and heating equipment and analyzing of physico-chemical reaction during storage. It is particularly necessary to measure denaturation enthalpy, temperature, latent heat of freezing, activation energy, enthalpy, entropy and free energy on freezing and heating rate. In this study, DSC was used to study effects of freezing and heating rate on thermophysical properties and denaturation temperature on scanning rate $2.5-10.0^{\circ}C/min$. On increasing scanning rate, denaturation temperature of protein and lipid incresed and freezing point, activation energy, enthalpy, entropy were decreased. In freezing process free energy of fishes were found to be $14.2-18.9 kcal/mol$.

  • PDF

Effect of Number and Location of Amine Groups on the Thermodynamic Parameters on the Acridine Derivatives to DNA

  • Kwon, Ji Hye;Park, Hee-Jin;Chitrapriya, Nataraj;Han, Sung Wook;Lee, Gil Jun;Lee, Dong Jin;Cho, Tae-Sub
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.3
    • /
    • pp.810-814
    • /
    • 2013
  • The thermodynamic parameters for the intercalative interaction of structurally related well known intercalators, 9-aminoacridine (9AA) and proflavine (PF) were determined by means of fluorescence quenching study. The fluorescence intensity of 9AA decreased upon intercalation to DNA, poly[$d(A-T)_2$] and poly[$d(G-C)_2$]. A van't Hoff plot was constructed from the temperature-dependence of slope of the ratio of the fluorophore in the absence and presence of a quencher molecule with respect to the quencher concentration, which is known as a Stern-Volmer plot. Consequently, the thermodynamic parameters, enthalpy and entropy change, for complex formation was calculated from the slope and y-intercept of the van't Hoff plot. The detailed thermodynamic profile has been elucidated the exothermic nature of complex formation. The complex formation of 9AA with DNA, poly[$d(A-T)_2$] and poly[$d(G-C)_2$] was energetically favorable with a similar negative Gibb's free energy. On the other hand, the entropy change appeared to be unfavorable for 9AA-poly[$d(G-C)_2$] complex formation, which was in contrast to that observed with native DNA and poly[$d(A-T)_2$] cases. The equilibrium constant for the intercalation of PF to poly[$d(G-C)_2$] was larger than that to DNA, and was the largest among sets tested despite the most unfavorable entropy change, which was compensated for by the largest favorable enthalpy. The favorable hydrogen bond contribution to the formation of the complexes was revealed from the analyzed thermodynamic data.

The Importance of Thermodynamic Quantities for the Determination of the Unknown Conformation: Ab initio Studies of$ K^+(H_2O)_3$

  • 이한명;Son, Hyeon S.;민병진
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.3
    • /
    • pp.345-351
    • /
    • 1999
  • The structures, the energetics, and the spectra of K+(H2O)3 have been studied at HF and MP2 levels with the basis set of triple-zeta plus two sets of polarization functions (TZ2P) for water molecules. Two structures considered are 3+0 (D3), and 2+1 (C2v). The 2+1 (C2v) has two hydrogen bonds between the primary hydration and the secondary hydration shell water molecules. They have similar binding energy and enthalpy. The most stable conformation of K+(H2O)3 is entropy driven as shown in Na+(H2O)5 and in Na+(H2O)6 cases. The 3+0 (D3) conformation is the most stable at 298 K and at 1 atm, based on Gibbs free energy changes (ΔGr). The thermal contributions to the enthalpy and the Gibbs free energy are corrected for the low frequency modes. The corrected ΔGr is in good agreement with the experimental value. Vibrational frequencies of two conformations are revealed as their characteristics.