• Title/Summary/Keyword: Enthalpy and entropy

Search Result 251, Processing Time 0.023 seconds

Studies on the processing of rapid fermented anchovy prepared with low salt contents by adapted microorganism. -2. Thermodynamic characteristics of microbial extracellular protease isolated from fermented fish paste- (미생물을 이용한 저식염 멸치젓의 속성발효에 관한 연구 -2. 젓갈에서 분리한 단백질분해효소의 열역학적 특성-)

  • Cha, Yong-Jun;Lee, Eung-Ho
    • Applied Biological Chemistry
    • /
    • v.33 no.4
    • /
    • pp.325-329
    • /
    • 1990
  • This study was undertaken to determine thermodynamic characteristics of B. subtilis p-4 and B. licheniformis p-5 proteases isolated from fermented anchovy paste. $K_m$ values of two proteases for casein as a substrate were 0.38mM in p-4 protease and 0.18mM in p-5 protease, respectively. Denaturation constants($K_D$) of p-4 and p-5 proteases were $12.2{\times}10^{-5}/sec\;and\;19.0{\times}10^{-5}/sec\;at\;40^{\circ}C,\;and\;35.7{\times}10^{-5}/sec\;and\;46.3{\times}10^{-5}/sec\;at\;50^{\circ}C$, respectively. Activation energies($E_a$) of p-4 and p-S pmteases were 19.6 Kcal/mole and 15.2kcal/mole, respectively. Free energy of activation(${\Delta}G^*$), activation enthalpy(${\Delta}H^*$) and activation entropy(${\Delta}S^*$) at $40^{\circ}C$ were 23.21Kcal/mole, 18.98Kcal/mole and -13.50 eu, respectively for p-4 protease and 22.93Kcal/mo1e, 14.58Kcal/mole and -26.68 eu, respectively for p-5 protease. The major amino acids in p-4 protease(151 residues of amino acid) were Gly, Glu, Pro, Asp, Ser, Ala, Lys and Leu, while those in p-5 protease(247 residues of amino acid) were Gly, Glu, Asp, Ala and Leu. It may be concluded that heat denaturation of two proteases showed liner regression curve and p-5 protease was more sensitive to heat than p-4 protease.

  • PDF

A Study on the Hydrolysis of Sarin and Soman by Merrifield-Type Diaminatedpolystyrene-Cu (II) Heterogeneous Polymers (Merrifield-Type Diaminatedpolystyrene-Cu (II) 불균일 촉매에 의한 Sarin과 Soman 분해반응 연구)

  • 정우영;계영식
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.164-175
    • /
    • 2000
  • Three compounds of Cu(II)-loaded N,N,N'-trimethylethylenediaminated Merrifield-type polymers were synthesized with yields higher than 80%, and the hydrolysis reaction rates of O-isopropylmethyl-phosphonofluoridate(GB) and O-pinacolylmethylphosphonofluoridate (GD) catalyzed by them have been surveyed. GB and GD hydrolysis by Cu(II)-loaded polymers occurs via intermediate complex mechanism where rapid equilibrium to form intermediate complex between substrate and Cu(II)-loaded polymers($K_f$) is followed by rate determining hydrolysis step($k_1$). The measured activation parameters for $k_1$ are ${\Delta}H^{\ddag}$ : $17.75{\pm}0.98kJ/mol$ ${\Delta}S^{\ddag}$ / : $-218.42{\pm}3.35J/mol$ K, $E^{\circ}_a$ : $20.22{\pm}0.98kJ/mo1$ for GB and ${\Delta}H^{\ddag}$ / : $11.16{\pm}1.15kJ/mol,$${\Delta}S^{\ddag}$ /: $-258.57{\pm}3.93J/mol$ K, $E^{\circ}_a$ : $13.64{\pm}1.15 kJ/mol$ for GD. Standard enthalpy/entropy changes corresponding to the intermediate complex formation constant $K_f$ are ${\Delta}H^{\circ}$ : $37.05{\pm}2.19 kJ/mo1,$$ {\Delta}S^{\circ}$ : $163.12{\pm}7.49 J/mol$ K and ${\Delta}H^{\circ}$ : 418.59{\pm}2.04 kJ/mol,$ ${\Delta}S^{\circ}$ : 4111.92{\pm}6.98 J/mol$ K for GB and GD, respectively, The electron push-pull mechanism by Cu(II)-loaded polymers lowers the P-F bond breaking energy(~400 kJ/mol) to less than 1/20 compared to the case in which no Cu(II)-loaded resin presents. Analysis of $K_f$ and 4k_1$ over pH=6.5~8.0 range suggest that the GB and GD hydrolysis occurs intramolecularily with $pK_a$ =7.29 for ligated $H_2O$ and $t_{1/2}$=36.9 sec, $pK_a$ = 7.06 and $t_{1/2}$=177.7 sec for GB and GD, respectively.

  • PDF

Study on Kinetics and Thermodynamics of Rotary Evaporation of Paclitaxel for Removal of Residual Pentane (파클리탁셀의 잔류 펜탄 제거를 위한 회전증발의 동역학 및 열역학에 관한 연구)

  • Han, Jang Hoon;Ji, Seong-Bin;Kim, Ye-Sol;Lee, Seung-Hyun;Park, Seo-Hui;Kim, Jin-Hyun
    • Korean Chemical Engineering Research
    • /
    • v.55 no.6
    • /
    • pp.807-815
    • /
    • 2017
  • This study investigated the removal efficiency of residual pentane from paclitaxel according to the drying temperature in the case of rotary evaporation, and performed a kinetic and thermodynamic analysis of the drying process. At all the temperatures (25, 30, 35, 40, and $45^{\circ}C$), a large amount of the residual solvent was initially removed during the drying, and the drying efficiency increased when increasing the drying temperature. Five drying models (Newton, Page, modified Page, Henderson and Pabis, Geometric) were then used for the kinetic analysis, where the Henderson and Pabis model showed the highest coefficient of determination ($r^2$) and lowest root mean square deviation (RMSD), indicating that these models were the most suitable. Furthermore, in the thermodynamic analysis of the rotary evaporation, the activation energy ($E_a$) was 4.9815 kJ/mol and the standard Gibbs free energy change (${\Delta}G^0$) was negative, whereas the standard enthalpy change (${\Delta}H^0$) and standard entropy change (${\Delta}S^0$) were both positive, indicating that the drying process was spontaneous, endothermic, and irreversible.

Removal of Cs by Adsorption with IE911 (Crystalline Silicotitanate) from High-Radioactive Seawater Waste (IE911 (crystalline silicotitanate) 의한 고방사성해수폐액으로부터 Cs의 흡착 제거)

  • Lee, Eil-Hee;Lee, Keun-Young;Kim, Kwang-Wook;Kim, Ik-Soo;Chung, Dong-Yong;Moon, Jei-Kwon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.13 no.3
    • /
    • pp.171-180
    • /
    • 2015
  • This study was performed on the removal of Cs, one of the main high- radioactive nuclides contained in the high-radioactive seawater waste (HSW), by adsorption with IE911 (crystalline silicotitanate type). For the effective removal of Cs and the minimization of secondary solid waste generation, adsorption of Cs by IE911 (hereafter denoted as IE911-Cs) was effective to carry out in the m/V (ratio of absorbent weight to solution volume) ratio of 2.5 g/L, and the adsorption time of 1 hour. In these conditions, Cs and Sr were adsorbed about 99% and less than 5%, respectively. IE911-Cs could be also expressed as a Langmuir isotherm and a pseudo-second order rate equation. The adsorption rate constants (k2) were decreased with increasing initial Cs concentrations and particle sizes, and increased with increasing ratios of m/V, solution temperatures and agitation speeds. The activation energy of IE911-Cs was about 79.9 kJ/mol. It was suggested that IE911-Cs was dominated by a chemical adsorption having a strong bonding form. From the negative values of Gibbs free energy and enthalpy, it was indicated that the reaction of IE911-Cs was a forward, exothermic and relatively active at lower temperatures. Additionally, the negative entropy values were seen that the adsorbed Cs was evenly distributed on the IE911.

Removal of Basic Dye from Aqueous Solution using Coal-based Granular Activated Carbon (석탄계 입상활성탄을 이용한 수용액으로부터 염기성 염료의 제거)

  • Choi, Han Ah;Park, Ha Neul;Moon, Hye Woon;Kim, Eun Bin;Jang, Yeon Woo;Won, Sung Wook
    • Clean Technology
    • /
    • v.23 no.2
    • /
    • pp.188-195
    • /
    • 2017
  • This research studied the adsorption of basic dye, Basic Blue 3 (BB3) by using coal-based granular activated carbon (C-GAC) from aqueous solution. All experiments were performed in batch processes, and adsorption parameters such as C-GAC dosage, contact time, initial dye concentration and temperature were evaluated. The removal efficiency of BB3 was increased with increasing the C-GAC dosage and 100% of initial concentration, $50mg\;L^{-1}$ was removed above 0.2 g of C-GAC. Also, the time to reach equilibrium depended on the initial dye concentration. According to the Langmuir model, the maximum uptakes of C-GAC were calculated to be 66.45, 84.97 and $87.19mg\;g^{-1}$ at 25, 35 and $45^{\circ}C$, respectively. In addition, thermodynamic parameters such as Gibbs free energy change, enthalpy change and entropy change were investigated.

Adsorption Characteristics of Coconut Shell-based Granular Activated Carbon on a Basic Dye Basic Blue 3 (염기성 염료 Basic Blue 3에 대한 야자계 입상활성탄의 흡착 특성)

  • Park, Ha Neul;Choi, Han Ah;Won, Sung Wook
    • Korean Chemical Engineering Research
    • /
    • v.56 no.1
    • /
    • pp.96-102
    • /
    • 2018
  • In this study, adsorption characteristics of coconut shell-based granular activated carbon (CS-GAC) on Basic Blue 3 (BB3) were evaluated. As the dosage of CS-GAC increased, the removal efficiency of BB3 tended to increase and the initial dye concentration of 50 mg/L was completely removed at 0.2 g dosage. Adsorption equilibrium achieved within 270 and 420 min at the initial concentrations of 25 and 50 mg/L, respectively, and the experimental data were represented by the pseudo-second-order model. The maximum uptakes ($q_{max}$) predicted by the Langmuir model were 34.45, 46.63 and 53.10 mg/g at 298, 308 and 318 K, respectively. The $q_{max}$ value increased as the temperature increased. Also, the Gibbs free energy (${\Delta}G$) was changed to -7.37, -8.19 and -10.40 kJ/mol with increasing temperature. The enthalpy change (${\Delta}H$) and the entropy change (${\Delta}S$) were 34.47 kJ/mol and 0.15 J/mol K, respectively. Therefore adsorption of BB3 by CS-GAC was spontaneous and endothermic.

Adsorption of Dyes with Different Functional Group by Activated Carbon: Parameters and Competitive Adsorption (활성탄에 의한 작용기가 다른 염료의 흡착: 파라미터 및 경쟁 흡착)

  • Lee, Jong Jib
    • Applied Chemistry for Engineering
    • /
    • v.33 no.2
    • /
    • pp.151-158
    • /
    • 2022
  • In this paper, parameter characteristics such as pH effect, isotherm, kinetic and thermodynamic parameters and competitive adsorption of dyes including malachite green (MG), direct red 81 (DR 81) and thioflavin S (TS), which have different functional groups, being adsorbed onto activated carbon were investigated. Langmuir, Freundlich and Temkin isotherm models were employed to find the adsorption mechanism. Effectiveness of adsorption treatment of three dyes by activated carbon were confirmed by the Langmuir dimensionless separation factor. The mechanism was found to be a physical adsorption which can be verified through the adsorption heat calculated by Temkin equation. The adsorption kinetics followed the pseudo second order and the rate limiting step was intra-particle diffusion. The positive enthalpy and entropy changes showed an endothermic reaction and increased disorder via adsorption at the S-L interface, respectively. For each dye molecule, negative Gibbs free energy increased with the temperature, which means that the process is spontaneous. In the binary component system, it was found that the same functional groups of the dye could interfere with the mutual adsorption, and different functional groups did not significantly affect the adsorption. In the ternary component system, the adsorption for MG lowered a bit, likely to be disturbed by the other dyes meanwhile DR 81 and TS were to be positively affected by the presence of MG, thus resulting in much higher adsorption.

Kinetics of the Reaction of Benzyl Chlorides with Pyridine in Methanol Solvent under High Pressure (고압하의 메탄올 용매내에서 염화벤질류와 피리딘과의 반응에 대한 반응속도론적 연구)

  • Oh Cheun Kwon;Young Cheul Kim;Jin Burm Kyong;Kee Joon Choi
    • Journal of the Korean Chemical Society
    • /
    • v.31 no.5
    • /
    • pp.413-418
    • /
    • 1987
  • Rates of the reaction for p-nitro benzyl chloride, benzyl chloride and p-methyl benzyl chloride with pyridine in methanol solvent have been measured by an electric conductivity method at 40$^{\circ}$C and 50$^{\circ}$C under various pressures (1∼2000bar). Pseudo first-order rate constants and second-order rate constants were determined. Rates of these reactions were increased in the order p-NO$_2$ < p-H < p-CH$_3$ and increased with temperature, pressure and concentration of pyridine. From those rate constants, the activation parameters were evaluated. The activation volume and the activation compressibility coefficient are both negative values, but the activation enthalpy is positive and the activation entropy is large negative value. From the evaluation of the ground state and transition state which was resulted from substituents and pressure, it was found that this reaction proceeds through S$_N$2 reaction, and S$_N$2 fashion is slightly disappeared as pressure increases.

  • PDF

Effects of Temperature and n-Alcohols (Propanol, Butanol, Pentanol and Hexanol) on the Micellization of Cetyltrimethylammonium Bromide (Cetyltrimethylammonium Bromide의 미셀화 현상에 미치는 온도 효과 및 n-알코올(프로판올, 부탄올, 펜탄올 및 헥산올) 효과)

  • Lee, Byeong Hwan
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.8
    • /
    • pp.539-546
    • /
    • 1994
  • The critical micelle concentration(CMC) and the counterion binding $constant(\beta)$ at the CMC of cetyltrimethylammonium bromide(CTAB) in a series of aqueous solutions containing medium chain-length n-alcohols(Propanol, Butanol, Pentanol and Hexanol) have been determined from the concentration dependence of electrical conductance at serveral temperature from $17^{\circ}C\;to\;41^{\circ}C.$ Thermodynamic parameters $({\Delta}G^o_m,\;{\Delta}H^o_m,\;{\Delta}S^o_m,\;and\;{\Delta}C_p)$ associated with micelle formation of CTAB have been also estimated from the temperature dependence of CMC and $\beta$ values, and the significance of these parameters and their relation to the theory of micelle formation have been considered. The results show that an enthalpy-entropy compensation effect is usually observed for the micellization of CTAB. The effects of n-alcohols on the micellar properties (CMC and $\beta$) of CTAB solutions have been also investigated. The addition of n-alcohol to the CTAB solution in a small quantity decreases the CMC value and the counterion binding constant $(\beta)$ at the CMC, but the addition of n-alcohol in an excessive quantity increases the CMC values on the conterary. These results have been explained in terms of the effect of the micelle-solubilized alcohol on the micellar surface charge density.

  • PDF

The Electromotive Force and Thermodynamic Properties of the Cell at High Pressure (고압하에서의 전지의 기전력과 열역학적 성질)

  • Jee Jong-Gi;Jung Jong-Jae;Hwang Jung-Ui
    • Journal of the Korean Chemical Society
    • /
    • v.18 no.5
    • /
    • pp.320-328
    • /
    • 1974
  • It is unable to derive the standard emf ($E^{\circ}$) of the cell at high pressure from the conventional method. However, when the concept of the complete equilibrium constant($K{\circ})$) is available to the conventional Nernst equation, it is possible to get the standard emf of the cell at high pressure(complete Nernst equation). Moreover, the other thermodynamic properties, such as the net change of solvation number(k), the compressibility of solvent(${\beta}$), ionization constant(K), the standard free energy change(${\Delta}G^{\circ}$), the standard enthalpy change(${\Delta}H^{\circ}$) and the standard entropy change (${\Delta}S^{\circ}$) of the cell reaction at equilibrium state have been also obtained. In this experiment, the emf of the cell; 12.5 % Cd(Hg)│$CdSO_4(3.105{\times}10^{-3}M),\;Hg_2SO_4│Hg$ have bee measured at temperature from 20 to $35^{\circ}C$ and at pressures from 1 to 2500 atms. The emf of the cell increased with increasing pressure at constant temperature, and did with increasing temperature at constant pressure. The net change of solvation number(k) of the cell reaction was 41.96 at $25^{\circ}C$, and kept constant value with pressure, while, K and ${\Delta}S^{\circ}$ increased with pressure, but whereas ${\Delta}G^{\circ}$ and ${\Delta}H^{\circ}$ decreased. Since the standard emf of the cell at high pressure can be calculated from the complete Nernst equation, the theory of chemical equilibrium could be developed with at high pressure as well as at the atmosphere.

  • PDF