• Title/Summary/Keyword: Enterobacter sp. YB-46

Search Result 1, Processing Time 0.018 seconds

Molecular Cloning and Characterization of myo-Inositol Dehydrogenase from Enterobacter sp. YB-46 (Enterobacter sp. YB-46의 myo-Inositol dehydrogenase 유전자 클로닝과 특성분석)

  • Park, Chan Young;Kim, Kwang-Kyu;Yoon, Ki-Hong
    • Microbiology and Biotechnology Letters
    • /
    • v.46 no.2
    • /
    • pp.102-110
    • /
    • 2018
  • A bacterial strain capable of metabolizing myo-inositol (MI) and converting to other substances was isolated from soil of orchard. The isolate, named YB-46, was grown on minimal medium supplemented with MI as the sole carbon source and was presumed to belonging to genus Enterobacter according to the 16S rDNA sequence. Escherichia coli transformant converting MI into unknown metabolites was selected from a metagenomic library prepared with fosmid pCC1FOS vector. Plasmid was isolated from the transformant, and the inserted gene was partially sequenced. From the nucleotide sequence, an iolG gene was identified to encode myo-inositol dehydrogenase (IolG) consisting of 336 amino residues. The IolG showed amino acid sequence similarity of about 50% with IolG of Enterobacter aerogenes and Bacillus subtilis. The His-tagged IolG (HtIolG) fused with hexahistidine at C-terminus was produced and purified from cell extract of recombinant E. coli. The purified HtIolG showed maximal activity at $45^{\circ}C$ and pH 10.5 with the highest activity for MI and D-glucose, and more than 90% of maximal activity for D-chiro-inositol, D-mannitol and D-xylose. $K_m$ and $V_{max}$ values of the HtIolG for MI were 1.83 mM and $0.724{\mu}mol/min/mg$ under the optimal reaction condition, respectively. The activity of HtIolG was increased 1.7 folds by $Zn^{2+}$, but was significantly inhibited by $Co^{2+}$ and SDS.