Browse > Article
http://dx.doi.org/10.4014/mbl.1805.05001

Molecular Cloning and Characterization of myo-Inositol Dehydrogenase from Enterobacter sp. YB-46  

Park, Chan Young (Food Science & Biotechnology Major, Woosong University)
Kim, Kwang-Kyu (DYNatural Co. Ltd.)
Yoon, Ki-Hong (Food Science & Biotechnology Major, Woosong University)
Publication Information
Microbiology and Biotechnology Letters / v.46, no.2, 2018 , pp. 102-110 More about this Journal
Abstract
A bacterial strain capable of metabolizing myo-inositol (MI) and converting to other substances was isolated from soil of orchard. The isolate, named YB-46, was grown on minimal medium supplemented with MI as the sole carbon source and was presumed to belonging to genus Enterobacter according to the 16S rDNA sequence. Escherichia coli transformant converting MI into unknown metabolites was selected from a metagenomic library prepared with fosmid pCC1FOS vector. Plasmid was isolated from the transformant, and the inserted gene was partially sequenced. From the nucleotide sequence, an iolG gene was identified to encode myo-inositol dehydrogenase (IolG) consisting of 336 amino residues. The IolG showed amino acid sequence similarity of about 50% with IolG of Enterobacter aerogenes and Bacillus subtilis. The His-tagged IolG (HtIolG) fused with hexahistidine at C-terminus was produced and purified from cell extract of recombinant E. coli. The purified HtIolG showed maximal activity at $45^{\circ}C$ and pH 10.5 with the highest activity for MI and D-glucose, and more than 90% of maximal activity for D-chiro-inositol, D-mannitol and D-xylose. $K_m$ and $V_{max}$ values of the HtIolG for MI were 1.83 mM and $0.724{\mu}mol/min/mg$ under the optimal reaction condition, respectively. The activity of HtIolG was increased 1.7 folds by $Zn^{2+}$, but was significantly inhibited by $Co^{2+}$ and SDS.
Keywords
Enterobacter sp. YB-46; myo-inositol dehydrogenase; cloning; purification; characterization;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Iuorno MJ, Jakubowicz DJ, Baillargeon JP, Dillon P, Gunn RD, Allan G, et al. 2002. Effects of D-chiro-inositol in lean women with the polycystic ovary syndrome. Endocr. Pract. 8: 417-423.   DOI
2 Kroger C, Fuch TM. 2009. Characterization of the myo-inositol utilization island of Salmonella enterica serovar Typhimurium. J. Bacteriol. 191: 545-554.   DOI
3 Jiang G, Krishnan AH, Kim YW, Wacek TJ, Krishnan HB. 2001. A functional myo-inositol dehydrogenase gene is required for efficient nitrogen fixation and competitiveness of Sinorhizobium fredii USDA191 to nodulate soybean (Glycine max [L.] Merr.). J. Bacteriol. 183: 2595-2604.   DOI
4 McLaurin J, Golomb R, Jurewicz A, Antel JP, Fraser PE. 2000. Inositol stereoisomers stabilize an oligomeric aggregate of Alzheimer amyloid ${\beta}$ peptide and inhibit $A{\beta}$-induced toxicity. J. Biol. Chem. 275: 18495-18502.   DOI
5 Berman T, Magasanik B. 1966. The pathway of myo-inositol degradation in Aerobacter aerogenes. Dehydrogenation and dehydration. J. Biol. Chem. 241: 800-806.
6 Yoshida KI, Aoyama D, Ishio I, Shibayama T, Fujita Y. 1997. Organization and transcription of the myo-inositol operon, iol, of Bacillus subtilis. J. Bacteriol. 179: 4591-4598.   DOI
7 Yoshida K, Sanbongi A, Murakami A, Suzuki H, Takenaka S, Takami H. 2012. Three inositol dehydrogenases involved in utilization and interconversion of inositol stereoisomers in a thermophile, Geobacillus kaustophilus HTA426. Microbiology 158: 1942-1952.   DOI
8 Yebra MJ, Zuniga M, Beaufils S, Perez-Martinez G, Deutscher J, Monedero V. 2007. Identification of a gene cluster enabling Lactobacillus casei BL23 to utilize myo-inositol. Appl. Environ. Microbiol. 73: 3850-3858.   DOI
9 Poole PS, Blyth A, Reid CJ, Walters K. 1994. myo-Inositol catabolism and catabolite regulation in Rhizobium leguminosarum bv. viciae. Microbiology 140: 2787-2795.   DOI
10 Galbraith MP, Feng SF, Borneman J, Triplett EW, de Bruijn FJ, Rossbach S. 1998. A functional myo-inositol catabolism pathway is essential for rhizopine utilization by Sinorhizobium meliloti. Microbiology 144: 2915-2924.   DOI
11 Kohler PR, Choong EL, Rossbach S. 2011. The RpiR-like repressor IolR regulates inositol catabolism in Sinorhizobium meliloti. J. Bacteriol. 193: 5155-5163.   DOI
12 Morinaga T, Ashida H, Yoshida K. 2010. Identification of two scyllo-inositol dehydrogenases in Bacillus subtilis. Microbiology 156: 1538-1546.   DOI
13 Yoshida K, Yamaguchi M, Morinaga T, Kinehara M, Ikeuchi M, Ashida H, et al. 2008. myo-Inositol catabolism in Bacillus subtilis. J. Biol. Chem. 283: 10415-10424.   DOI
14 Fujita Y, Shindo K, Miwa Y, Yoshida K. 1991. Bacillus subtilis inositol dehydrogenase-encoding gene (idh): sequence and expression in Escherichia coli. Gene 108: 121-125.   DOI
15 Kohler PR, Zheng JY, Schoffers E, Rossbach S. 2010. Inositol catabolism, a key pathway in Sinorhizobium meliloti for competitive host nodulation. Appl. Environ. Microbiol. 76: 7972-7980.   DOI
16 Ramaley R, Fujita Y, Freese E. 1979. Purification and properties of Bacillus subtilis inositol dehydrogenase. J. Biol. Chem. 254: 7684-7690.
17 Thompson J, Donkersloot JA. 1992. N-(carboxyalkyl) amino acids: occurrence, synthesis, and functions. Annu. Rev. Biochem. 61: 517-557.   DOI
18 Fry J, Wood M, Poole PS. 2001. Investigation of myo-inositol catabolism in Rhizobium leguminosarum bv. viciae and its effect on nodulation competitiveness. Mol. Plant-Microbe Interact. 14: 1016-1025.   DOI
19 Kroger C, Srikumar S, Ellwart J, Fuchs TM. 2011. Bistability in myo-inositol utilization by Salmonella enterica serovar Typhimurium. J. Bacteriol. 193: 1427-1435.   DOI
20 Bertwistle D, Vogt L, Aamudalapalli HB, Palmer DR, Sanders DA. 2014. Purification, crystallization and room-temperature X-ray diffraction of inositol dehydrogenase LcIDH2 from Lactobacillus casei BL23. Acta Crystallogr. F Struct. Biol. Commun. 70: 979-983.   DOI
21 van Straaten KE, Zheng H, Palmer DR, Sanders DA. 2010. Structural investigation of myo-inositol dehydrogenase from Bacillus subtilis: implications for catalytic mechanism and inositol dehydrogenase subfamily classification. Biochem. J. 432: 237-247.   DOI
22 Criddle WJ, Fry JC, Keaney MM. 1974. myo-Inositol dehydrogenase(s) from Acetomonas oxydans. Optimization of conditions for solubilization of membrane-bound enzyme. Biochem. J. 137: 449-452.   DOI
23 Holscher T, Weinert-Sepalage D, Gorisch H. 2007. Identification of membrane-bound quinoprotein inositol dehydrogenase in Gluconobacter oxydans ATCC 621H. Microbiology 153: 499-506.   DOI
24 Fujita Y, Ramaley R, Freese E. 1977. Location and properties of glucose dehydrogenase in sporulating cells and spores of Bacillus subtilis. J. Bacteriol. 132: 282-293.