• 제목/요약/키워드: Ensiling Density

검색결과 5건 처리시간 0.023초

Effect of Ensiling Density on Fermentation Quality of Guineagrass (Panicum maximum Jacq.) Silage during the Early Stage of Ensiling

  • Shao, Tao;Wang, T.;Shimojo, M.;Masuda, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제18권9호
    • /
    • pp.1273-1278
    • /
    • 2005
  • This study is to evaluate the effect of different levels of ensiling density on the fermentation quality of guineagrass silages during the early stage of ensiling. Guineagrass at the milky ripe stage was chopped and ensiled into a small-scale laboratory silo at two ensiling density levels (high density at 95 g/silo and low density at 75 g/silo). Three silos per level were opened after six ensiling periods (0.5, 1, 1.5, 2, 3 and 7 days of ensiling) and the fermentation qualities were analyzed. Within the initial 1.5 days of ensiling there were not significant (p>0.05) differences in the fermentation qualities between two density levels silages, and an almost constant pH and no or only small amounts of lactic acid, acetic acid and total volatile fatty acids were detected. However, the high density silage significantly (p<0.05) increased the rate and extent of fermentation after 1.5 days of ensiling, which was well reflected in significantly (p<0.05) faster and larger pH decline and lactic acid production at each elapsed time as compared with the low density silage. This resulted in significantly (p<0.05) lower finial pH and significantly (p<0.05) higher lactic acid content at the end of the experiment. Moreover, there was higher AA content relative to LA in both the H-D and L-D silages during the full fermentation course, and resulted in the AA-type silage. There were generally somewhat or significantly (p<0.05) higher acetic acid, volatile fatty acids and ammonia-N/total nitrogen in the high density silage than in the low density silage during the initial 3 days of ensiling. However, there were higher (p>0.05) ammonia-N/total nitrogen and significantly (p<0.05) higher butyric acid content in the low density silage at day 7 of ensiling. The silages of two density levels showed an initial increase in glucose between 0.5 and 1 day for the high density silage and between 1 and 1.5 days for the low density silage, respectively, thereafter showed a large decrease until the end of the experiment. There were not large differences (p>0.05) in ethanol content between the low density and high density silages that showed small amounts within initial 3 days of ensiling. However, the low density silage had a significantly (p<0.05) higher ethanol content than the high density silage at the end of experiment. From the above results it was suggested that the increase in ensiling density was an effective method to improve the fermentation quality, especially for tropical grasses.

육계분 혐기 또는 퇴적 발효 사료 제조 시 당밀 첨가 및 펠렛화가 사료영양적 가치 및 사료 적응기의 한우 기호성 개선에 미치는 영향 (Effects of Molasses Addition and(or) Pelleting on Nutritional Characteristics of Broiler Litter Processed by Ensiling or Deepstacking and Palatability Improvement by 'Hanwoo' During the Adjustment Period)

  • 곽완섭;박종문
    • Journal of Animal Science and Technology
    • /
    • 제45권1호
    • /
    • pp.87-100
    • /
    • 2003
  • 본 연구는 육계분 혐기 또는 퇴적 발효사료 제조 시의 적정 당밀 첨가 수준을 도출하고, 발효 전 후의 영양적 및 발효 성상의 변화를 구명하고, 펠렛 처리 효과를 평가하며, 그리고 기존의 한우 사양 체계에서의 당밀 또는 펠렛 처리된 육계분 발효사료 급여 시 한우에 의한 기호성 개선 통한 적응기간 단축 효과를 평가하고자 실시되었다. 육계분의 혐기발효 시 경제적이고도 효과적으로 혐기발효를 일으키는 당밀 적정 첨가 수준은 5%인 것으로 사료되었다. 육계분의 혐기 또는 퇴적발효 시 당밀 5% 첨가는 발효 성상을 향상시키나(P<0.05), 화학적 성분과 in vitro 영양소 소화율에는 현저한 영향을 미치지 않았다. 육계분 퇴적발효사료의 펠렛화는 밀도(중량/부피)를 3배정도 증가시키고, 수분을 현저히(P<0.05) 증발시켰으나, 약간의 유기물 감소(P<0.05) 현상을 보였다. 육계분 발효사료를 펠렛 처리 또는 당밀 첨가는 한우에 의한 기호성을 뚜렷하게 향상시켰으며, 결과적으로 한우의 이들 사료에 대한 적응기간을 반 정도(8-9일)로 단축시켰다. 종합적으로 육계분 발효사료 제조 시 당밀 첨가 또는 펠렛 처리는 사료영양적 가치를 유지하면서 적응기간동안의 한우 기호성을 현저하게 개선시키는 효과가 있었다.

미생물 첨가와 사일로 밀도가 총체벼 사일리지의 영양소 함량, 발효특성 및 호기적 안전성에 미치는 영향 (Effects of Microbial Additives and Silo Density on Chemical Compositions, Fermentation Indices, and Aerobic Stability of Whole Crop Rice Silage)

  • 주영호;정승민;서명지;이성신;최기춘;김삼철
    • 한국초지조사료학회지
    • /
    • 제42권2호
    • /
    • pp.96-102
    • /
    • 2022
  • 본 연구에서는 미생물 첨가제와 사일로 밀도가 총체벼 곤포 사일리지의 영양소 함량, 발효특성 및 호기적 안전성에 미치는 영향을 규명하고자 수행하였다. 미생물 첨가와 사일로 밀도는 사일리지의 영양소 함량에 영향을 미치지 않았다. 하지만, INO 시험구에서 lactate 함량, lactate와 acetate 비율 및 LAB는 감소하였고, propionate 함량, yeast 및 호기적 안전성은 증가하였다. 사일로 밀도는 pH와 lactate 함량에 영향을 미쳤으나, 처리 구간 차이는 매우 적었다. 이상의 결과에서, L. brevis 5M2와 L. buchneri 6M1을 포함한 혼합형 LAB 첨가제 사용은 총체벼 곤포 사일리지의 호기적 안전성 개선에 유리하며, 사일로 밀도는 베일 압력이 430~770 kgf/cm2일 때 정상적인 사일리지 발효가 일어나는 것으로 확인되었다.

Effect of additives and filling methods on whole plant corn silage quality, fermentation characteristics and in situ digestibility

  • Jiao, Ting;Lei, Zhaomin;Wu, Jianping;Li, Fei;Casper, David P.;Wang, Jianfu;Jiao, Jianxin
    • Animal Bioscience
    • /
    • 제34권11호
    • /
    • pp.1776-1783
    • /
    • 2021
  • Objective: This project aimed to evaluate the effects of both different additives and filling methods on nutritive quality, fermentation profile, and in situ digestibility of whole plant corn silage. Methods: Whole plant corn forage harvested at 26.72% dry matter (DM) was chopped and treated with two filling methods, i) fill silos at one time (F1), ii) fill silos at three times (F3), packing samples into one/three silo capacity at the first day, another one/three capacity at the second day, then one/three at the third day, three replicates. For each replicate, samples were treated with three additives, i) control (CTRL, no additive), ii) Sila-Max (MAX, Ralco Nutrition Inc., Marshall, MN, USA), and iii) Sila-Mix (MIX, Ralco Nutrition Inc., USA). With three replicates of each secondary treatment, there were nine silos, 54 silos in total. Each silo had a packing density of 137.61 kg of DM/m3. All silos were weighed and stored in lab at ambient temperature. Results: After 60 d of ensiling, all items showed good silage fermentation under MAX filled one time or three times (p<0.01). Higher silage quality for all additives was obtained at filling one time than that filled three times (p<0.01). The highest DM and lowest DM loss rate (DMLR) occurred to MAX treatment at two filling methods (p<0.01); Digestibility of acid detergent fiber, neutral detergent fiber (NDF), and curde protein had the same results as silage quality (p<0.01). Yield of digestible DM and digestible NDF also showed higher value under MAX especially for filling one time (p<0.05). Conclusion: All corn silages showed good fermentation attributes (pH<4.0). The forage filled one time had higher silage quality than that filled three times (p<0.01). MAX with homofermentative lactic acid bacteria enhanced the lactic acid fermentation, silage quality and nutrient digestibility, and so improved the digestible nutrient yield.

Chemical composition and in vitro digestibility of corn stover during field exposure and the fermentation characteristics of silage prepared with microbial additives

  • Gao, Jun Lei;Wang, Peng;Zhou, Chang Hai;Li, Ping;Tang, Hong Yu;Zhang, Jia Bao;Cai, Yimin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권12호
    • /
    • pp.1854-1863
    • /
    • 2019
  • Objective: To effectively use corn stover resources as animal feed, we explored the chemical composition and in vitro digestibility of corn stover during field exposure and the fermentation characteristics of silage prepared with lactic acid bacteria (LAB) and cellulase. Methods: Corn ears including the cobs and shucks were harvested at the ripe stage. The corn stover was exposed in the field under natural weather conditions. Silages were prepared after 0, 2, 4, 7, 15, 30, and 60 d of exposure. Corn stover was chopped into approximately 1 to 2 cm lengths and then packed into 5 liter plastic silos. The ensiling density was $550.1{\pm}20.0g/L$ of fresh matter, and the silos were kept at room temperature ($10^{\circ}C$ to $25^{\circ}C$). Silage treatments were designed as follows: without additives (control), with LAB, with cellulase, and with LAB+ cellulase. After 45 d of fermentation, the silos were opened for chemical composition, fermentation quality and in vitro digestion analyses. Results: After harvest, corn stover contained 78.19% moisture, 9.01% crude protein (CP) and 64.54% neutral detergent fiber (NDF) on a dry matter (DM) basis. During field exposure, the DM, NDF, and acid detergent fiber (ADF) contents of corn stover increased, whereas the CP and water-soluble carbohydrate contents and in vitro digestibility of the DM and CP decreased (p<0.05). Compared to the control silage, cellulase-treated silage had lower (p<0.05) NDF and ADF contents. The pH values were lower in silage treated with LAB, cellulase, or LAB+cellulase, and lactic acid contents were higher (p<0.05) than those of the control. Silage treated with cellulase or LAB+cellulase improved (p<0.05) the in vitro DM digestibility (IVDMD) compared to that of the control or LAB-treated silage. Conclusion: Corn stover silage should be prepared using fresh materials since stover nutrients are lost during field exposure, and LAB and cellulase can improve silage fermentation and IVDMD.