• Title/Summary/Keyword: Ensiling Density

Search Result 5, Processing Time 0.021 seconds

Effect of Ensiling Density on Fermentation Quality of Guineagrass (Panicum maximum Jacq.) Silage during the Early Stage of Ensiling

  • Shao, Tao;Wang, T.;Shimojo, M.;Masuda, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.9
    • /
    • pp.1273-1278
    • /
    • 2005
  • This study is to evaluate the effect of different levels of ensiling density on the fermentation quality of guineagrass silages during the early stage of ensiling. Guineagrass at the milky ripe stage was chopped and ensiled into a small-scale laboratory silo at two ensiling density levels (high density at 95 g/silo and low density at 75 g/silo). Three silos per level were opened after six ensiling periods (0.5, 1, 1.5, 2, 3 and 7 days of ensiling) and the fermentation qualities were analyzed. Within the initial 1.5 days of ensiling there were not significant (p>0.05) differences in the fermentation qualities between two density levels silages, and an almost constant pH and no or only small amounts of lactic acid, acetic acid and total volatile fatty acids were detected. However, the high density silage significantly (p<0.05) increased the rate and extent of fermentation after 1.5 days of ensiling, which was well reflected in significantly (p<0.05) faster and larger pH decline and lactic acid production at each elapsed time as compared with the low density silage. This resulted in significantly (p<0.05) lower finial pH and significantly (p<0.05) higher lactic acid content at the end of the experiment. Moreover, there was higher AA content relative to LA in both the H-D and L-D silages during the full fermentation course, and resulted in the AA-type silage. There were generally somewhat or significantly (p<0.05) higher acetic acid, volatile fatty acids and ammonia-N/total nitrogen in the high density silage than in the low density silage during the initial 3 days of ensiling. However, there were higher (p>0.05) ammonia-N/total nitrogen and significantly (p<0.05) higher butyric acid content in the low density silage at day 7 of ensiling. The silages of two density levels showed an initial increase in glucose between 0.5 and 1 day for the high density silage and between 1 and 1.5 days for the low density silage, respectively, thereafter showed a large decrease until the end of the experiment. There were not large differences (p>0.05) in ethanol content between the low density and high density silages that showed small amounts within initial 3 days of ensiling. However, the low density silage had a significantly (p<0.05) higher ethanol content than the high density silage at the end of experiment. From the above results it was suggested that the increase in ensiling density was an effective method to improve the fermentation quality, especially for tropical grasses.

Effects of Molasses Addition and(or) Pelleting on Nutritional Characteristics of Broiler Litter Processed by Ensiling or Deepstacking and Palatability Improvement by 'Hanwoo' During the Adjustment Period (육계분 혐기 또는 퇴적 발효 사료 제조 시 당밀 첨가 및 펠렛화가 사료영양적 가치 및 사료 적응기의 한우 기호성 개선에 미치는 영향)

  • Kwak, W. S.;Park, J. M.
    • Journal of Animal Science and Technology
    • /
    • v.45 no.1
    • /
    • pp.87-100
    • /
    • 2003
  • This study was conducted in order to determine a proper level of molasses addition through the analysis of changes in appearance, nutritive and silage parameters before and after ensiling or deepstacking of broiler litter, to evaluate the effect of pelleting processed broiler litter and to develop methods to enhance palatability of broiler litter and reduce the adjustment period by ‘Hanwoo’ steers. Molasses addition was effective in ensiling and deepstacking of broiler litter and the proper addition level was about 5%. Changes in nutritive values of broiler litter by ensiling and deepstacking with or without molasses treatment were not great. Adding 5% molasses at deepstacking of broiler litter did not affect(P<0.05) in vitro digestion of dry matter and organic matter. Pelleting of broiler litter resulted in significant(P<0.05) moisture evaporation, organic matter reduction and nearly threefold increase of bulk density. Pelleting or molasses addition of broiler litter improved palatability by ‘Hanwoo’ steers and reduced the adjustment period by half(8-9 d).

Effects of Microbial Additives and Silo Density on Chemical Compositions, Fermentation Indices, and Aerobic Stability of Whole Crop Rice Silage (미생물 첨가와 사일로 밀도가 총체벼 사일리지의 영양소 함량, 발효특성 및 호기적 안전성에 미치는 영향)

  • Joo, Young Ho;Jeong, Seung Min;Seo, Myeong Ji;Lee, Seong Shin;Choi, Ki Choon;Kim, Sam Churl
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.42 no.2
    • /
    • pp.96-102
    • /
    • 2022
  • The present study investigated effects of microbial additives and silo density on chemical compositions, fermentation indices, and aerobic stability of whole crop rice (WCR) silage. The WCR ("Youngwoo") was harvested at 49.7% dry matter (DM), and ensiled into 500 kg bale silo with two different compaction pressures at 430 kgf (kilogram-force)/cm2 (LOW) and 760 kgf/cm2 (HIGH) densities. All WCR forage were applied distilled water (CON) or mixed inoculants (Lactobacillus brevis 5M2 and Lactobacillus buchneri 6M1) with 1:1 ratio at 1x105 colony forming unit/g (INO). The concentrations of DM, crude protein, ether extract, crude ash, neutral detergent fiber, and acid detergent fiber of whole crop rice before ensiling were 49.7, 9.59, 2.85, 6.74, 39.7, and 21.9%, respectively. Microbial additives and silo density did not affect the chemical compositions of WCR silage (p>0.05). The INO silages had lower lactate (p<0.001), but higher propionate (p<0.001). The LOW silages had higher lactate (p=0.004). The INO silages had higher yeast count (p<0.001) and aerobic stability (p<0.001). However, microbial counts and aerobic stability were not affected by silo density. Therefore, this study concluded that fermentation quality of WCR silage improved by microbial additives, but no effects by silo density.

Effect of additives and filling methods on whole plant corn silage quality, fermentation characteristics and in situ digestibility

  • Jiao, Ting;Lei, Zhaomin;Wu, Jianping;Li, Fei;Casper, David P.;Wang, Jianfu;Jiao, Jianxin
    • Animal Bioscience
    • /
    • v.34 no.11
    • /
    • pp.1776-1783
    • /
    • 2021
  • Objective: This project aimed to evaluate the effects of both different additives and filling methods on nutritive quality, fermentation profile, and in situ digestibility of whole plant corn silage. Methods: Whole plant corn forage harvested at 26.72% dry matter (DM) was chopped and treated with two filling methods, i) fill silos at one time (F1), ii) fill silos at three times (F3), packing samples into one/three silo capacity at the first day, another one/three capacity at the second day, then one/three at the third day, three replicates. For each replicate, samples were treated with three additives, i) control (CTRL, no additive), ii) Sila-Max (MAX, Ralco Nutrition Inc., Marshall, MN, USA), and iii) Sila-Mix (MIX, Ralco Nutrition Inc., USA). With three replicates of each secondary treatment, there were nine silos, 54 silos in total. Each silo had a packing density of 137.61 kg of DM/m3. All silos were weighed and stored in lab at ambient temperature. Results: After 60 d of ensiling, all items showed good silage fermentation under MAX filled one time or three times (p<0.01). Higher silage quality for all additives was obtained at filling one time than that filled three times (p<0.01). The highest DM and lowest DM loss rate (DMLR) occurred to MAX treatment at two filling methods (p<0.01); Digestibility of acid detergent fiber, neutral detergent fiber (NDF), and curde protein had the same results as silage quality (p<0.01). Yield of digestible DM and digestible NDF also showed higher value under MAX especially for filling one time (p<0.05). Conclusion: All corn silages showed good fermentation attributes (pH<4.0). The forage filled one time had higher silage quality than that filled three times (p<0.01). MAX with homofermentative lactic acid bacteria enhanced the lactic acid fermentation, silage quality and nutrient digestibility, and so improved the digestible nutrient yield.

Chemical composition and in vitro digestibility of corn stover during field exposure and the fermentation characteristics of silage prepared with microbial additives

  • Gao, Jun Lei;Wang, Peng;Zhou, Chang Hai;Li, Ping;Tang, Hong Yu;Zhang, Jia Bao;Cai, Yimin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.12
    • /
    • pp.1854-1863
    • /
    • 2019
  • Objective: To effectively use corn stover resources as animal feed, we explored the chemical composition and in vitro digestibility of corn stover during field exposure and the fermentation characteristics of silage prepared with lactic acid bacteria (LAB) and cellulase. Methods: Corn ears including the cobs and shucks were harvested at the ripe stage. The corn stover was exposed in the field under natural weather conditions. Silages were prepared after 0, 2, 4, 7, 15, 30, and 60 d of exposure. Corn stover was chopped into approximately 1 to 2 cm lengths and then packed into 5 liter plastic silos. The ensiling density was $550.1{\pm}20.0g/L$ of fresh matter, and the silos were kept at room temperature ($10^{\circ}C$ to $25^{\circ}C$). Silage treatments were designed as follows: without additives (control), with LAB, with cellulase, and with LAB+ cellulase. After 45 d of fermentation, the silos were opened for chemical composition, fermentation quality and in vitro digestion analyses. Results: After harvest, corn stover contained 78.19% moisture, 9.01% crude protein (CP) and 64.54% neutral detergent fiber (NDF) on a dry matter (DM) basis. During field exposure, the DM, NDF, and acid detergent fiber (ADF) contents of corn stover increased, whereas the CP and water-soluble carbohydrate contents and in vitro digestibility of the DM and CP decreased (p<0.05). Compared to the control silage, cellulase-treated silage had lower (p<0.05) NDF and ADF contents. The pH values were lower in silage treated with LAB, cellulase, or LAB+cellulase, and lactic acid contents were higher (p<0.05) than those of the control. Silage treated with cellulase or LAB+cellulase improved (p<0.05) the in vitro DM digestibility (IVDMD) compared to that of the control or LAB-treated silage. Conclusion: Corn stover silage should be prepared using fresh materials since stover nutrients are lost during field exposure, and LAB and cellulase can improve silage fermentation and IVDMD.