• Title/Summary/Keyword: Ensemble weather prediction

Search Result 46, Processing Time 0.027 seconds

Recent Trends of Meteorological Research in North Korea (2007-2016) - Focusing on Journal of Weather and Hydrology - (최근 10년(2007~2016년) 북한의 기상기후 연구 동향 - 기상과 수문지를 중심으로 -)

  • Lee, Seung-Wook;Lee, Dae-Geun;Lim, Byunghwan
    • Atmosphere
    • /
    • v.27 no.4
    • /
    • pp.411-422
    • /
    • 2017
  • The aim of this research is to review recent trends in weather and climate research in North Korea. We selected North Korean journal 'Weather and Hydrology' for the last 10 years (2007-2016), and identified trends in research subject, researchers, and affiliations. Furthermore, we analyzed the major achievements and trends by research sector. Our main results are same as follows. The largest number of researches on 'modernization and informatization on prediction' have been carried out in North Korea's recent meteorological and climatological research. This could be implicated that the scope of national science policy directly affected the promotion of specific research field. Especially, North Korea was evaluated to be concentrating its efforts on numerical model research and development. The numerical model which enables very short-term (6 hours) rainfall forecast which using ensemble Kalman filter data assimilation method (4D EnKF) was developed. In addition, development of automatic weather system and improvement of the data transfer system were promoted. However, the result reveals that the automated real-time data transfer system was not fully equipped yet. These results could be used as a basic data for meteorological cooperation between South and North Korea.

Improving streamflow prediction with assimilating the SMAP soil moisture data in WRF-Hydro

  • Kim, Yeri;Kim, Yeonjoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.205-205
    • /
    • 2021
  • Surface soil moisture, which governs the partitioning of precipitation into infiltration and runoff, plays an important role in the hydrological cycle. The assimilation of satellite soil moisture retrievals into a land surface model or hydrological model has been shown to improve the predictive skill of hydrological variables. This study aims to improve streamflow prediction with Weather Research and Forecasting model-Hydrological modeling system (WRF-Hydro) by assimilating Soil Moisture Active and Passive (SMAP) data at 3 km and analyze its impacts on hydrological components. We applied Cumulative Distribution Function (CDF) technique to remove the bias of SMAP data and assimilate SMAP data (April to July 2015-2019) into WRF-Hydro by using an Ensemble Kalman Filter (EnKF) with a total 12 ensembles. Daily inflow and soil moisture estimates of major dams (Soyanggang, Chungju, Sumjin dam) of South Korea were evaluated. We investigated how hydrologic variables such as runoff, evaporation and soil moisture were better simulated with the data assimilation than without the data assimilation. The result shows that the correlation coefficient of topsoil moisture can be improved, however a change of dam inflow was not outstanding. It may attribute to the fact that soil moisture memory and the respective memory of runoff play on different time scales. These findings demonstrate that the assimilation of satellite soil moisture retrievals can improve the predictive skill of hydrological variables for a better understanding of the water cycle.

  • PDF

Prediction and Analysis of PM2.5 Concentration in Seoul Using Ensemble-based Model (앙상블 기반 모델을 이용한 서울시 PM2.5 농도 예측 및 분석)

  • Ryu, Minji;Son, Sanghun;Kim, Jinsoo
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1191-1205
    • /
    • 2022
  • Particulate matter(PM) among air pollutants with complex and widespread causes is classified according to particle size. Among them, PM2.5 is very small in size and can cause diseases in the human respiratory tract or cardiovascular system if inhaled by humans. In order to prepare for these risks, state-centered management and preventable monitoring and forecasting are important. This study tried to predict PM2.5 in Seoul, where high concentrations of fine dust occur frequently, using two ensemble models, random forest (RF) and extreme gradient boosting (XGB) using 15 local data assimilation and prediction system (LDAPS) weather-related factors, aerosol optical depth (AOD) and 4 chemical factors as independent variables. Performance evaluation and factor importance evaluation of the two models used for prediction were performed, and seasonal model analysis was also performed. As a result of prediction accuracy, RF showed high prediction accuracy of R2 = 0.85 and XGB R2 = 0.91, and it was confirmed that XGB was a more suitable model for PM2.5 prediction than RF. As a result of the seasonal model analysis, it can be said that the prediction performance was good compared to the observed values with high concentrations in spring. In this study, PM2.5 of Seoul was predicted using various factors, and an ensemble-based PM2.5 prediction model showing good performance was constructed.

Assessing the skill of seasonal flow forecasts from ECMWF for predicting inflows to multipurpose dams in South Korea (ECMWF 계절 기상 전망을 활용한 국내 다목적댐 유입량 예측의 성능 비교·평가)

  • Lee, Yong Shin;Kang, Shin Uk
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.9
    • /
    • pp.571-583
    • /
    • 2024
  • Forecasting dam inflows in the medium to long term is crucial for effective dam operation and the prevention of water-related disasters such as floods and droughts. However, the increasing frequency of extreme weather events due to climate change has made hydrological forecasting more challenging. Since 2000, seasonal weather forecasts, which provide predictions for weather variables up to about seven months ahead, and their hydrological interpretation, known as Seasonal Flow Forecasts (SFFs) have gained significant global interest. This study utilises seasonal weather forecasts from the European Centre for Medium-Range Weather Forecasts (ECMWF), converting them into inflow forecasts using a hydrological model for 12 multipurpose dams in South Korea from 2011 to 2020. We then compare the performance of these SFFs with the Ensemble Streamflow Prediction (ESP). Our results indicate that while SFFs are more effective for short-term predictions of 1-2 months, ESP outperforms SFFs for long-term predictions. Seasonally, the performance of SFFs is higher in October-November but lower from December to February. Moreover, our findings demonstrate that SFFs are highly effective in quantitatively predicting dry conditions, although they tend to underestimate inflows under wet conditions.

Reliability Assessment of Temperature and Precipitation Seasonal Probability in Current Climate Prediction Systems (현 기후예측시스템에서의 기온과 강수 계절 확률 예측 신뢰도 평가)

  • Hyun, Yu-Kyung;Park, Jinkyung;Lee, Johan;Lim, Somin;Heo, Sol-Ip;Ham, Hyunjun;Lee, Sang-Min;Ji, Hee-Sook;Kim, Yoonjae
    • Atmosphere
    • /
    • v.30 no.2
    • /
    • pp.141-154
    • /
    • 2020
  • Seasonal forecast is growing in demand, as it provides valuable information for decision making and potential to reduce impact on weather events. This study examines how operational climate prediction systems can be reliable, producing the probability forecast in seasonal scale. A reliability diagram was used, which is a tool for the reliability by comparing probabilities with the corresponding observed frequency. It is proposed for a method grading scales of 1-5 based on the reliability diagram to quantify the reliability. Probabilities are derived from ensemble members using hindcast data. The analysis is focused on skill for 2 m temperature and precipitation from climate prediction systems in KMA, UKMO, and ECMWF, NCEP and JMA. Five categorizations are found depending on variables, seasons and regions. The probability forecast for 2 m temperature can be relied on while that for precipitation is reliable only in few regions. The probabilistic skill in KMA and UKMO is comparable with ECMWF, and the reliabilities tend to increase as the ensemble size and hindcast period increasing.

A gradient boosting regression based approach for energy consumption prediction in buildings

  • Bataineh, Ali S. Al
    • Advances in Energy Research
    • /
    • v.6 no.2
    • /
    • pp.91-101
    • /
    • 2019
  • This paper proposes an efficient data-driven approach to build models for predicting energy consumption in buildings. Data used in this research is collected by installing humidity and temperature sensors at different locations in a building. In addition to this, weather data from nearby weather station is also included in the dataset to study the impact of weather conditions on energy consumption. One of the main emphasize of this research is to make feature selection independent of domain knowledge. Therefore, to extract useful features from data, two different approaches are tested: one is feature selection through principal component analysis and second is relative importance-based feature selection in original domain. The regression model used in this research is gradient boosting regression and its optimal parameters are chosen through a two staged coarse-fine search approach. In order to evaluate the performance of model, different performance evaluation metrics like r2-score and root mean squared error are used. Results have shown that best performance is achieved, when relative importance-based feature selection is used with gradient boosting regressor. Results of proposed technique has also outperformed the results of support vector machines and neural network-based approaches tested on the same dataset.

Production of Fine-resolution Agrometeorological Data Using Climate Model

  • Ahn, Joong-Bae;Shim, Kyo-Moon;Lee, Deog-Bae;Kang, Su-Chul;Hur, Jina
    • Proceedings of The Korean Society of Agricultural and Forest Meteorology Conference
    • /
    • 2011.11a
    • /
    • pp.20-27
    • /
    • 2011
  • A system for fine-resolution long-range weather forecast is introduced in this study. The system is basically consisted of a global-scale coupled general circulation model (CGCM) and Weather Research and Forecast (WRF) regional model. The system makes use of a data assimilation method in order to reduce the initial shock or drift that occurs at the beginning of coupling due to imbalance between model dynamics and observed initial condition. The long-range predictions are produced in the system based on a non-linear ensemble method. At the same time, the model bias are eliminated by estimating the difference between hindcast model climate and observation. In this research, the predictability of the forecast system is studied, and it is illustrated that the system can be effectively used for the high resolution long-term weather prediction. Also, using the system, fine-resolution climatological data has been produced with high degree of accuracy. It is proved that the production of agrometeorological variables that are not intensively observed are also possible.

  • PDF

An Assessment of Applicability of Heat Waves Using Extreme Forecast Index in KMA Climate Prediction System (GloSea5) (기상청 현업 기후예측시스템(GloSea5)에서의 극한예측지수를 이용한 여름철 폭염 예측 성능 평가)

  • Heo, Sol-Ip;Hyun, Yu-Kyung;Ryu, Young;Kang, Hyun-Suk;Lim, Yoon-Jin;Kim, Yoonjae
    • Atmosphere
    • /
    • v.29 no.3
    • /
    • pp.257-267
    • /
    • 2019
  • This study is to assess the applicability of the Extreme Forecast Index (EFI) algorithm of the ECMWF seasonal forecast system to the Global Seasonal Forecasting System version 5 (GloSea5), operational seasonal forecast system of the Korea Meteorological Administration (KMA). The EFI is based on the difference between Cumulative Distribution Function (CDF) curves of the model's climate data and the current ensemble forecast distribution, which is essential to diagnose the predictability in the extreme cases. To investigate its applicability, the experiment was conducted during the heat-wave cases (the year of 1994 and 2003) and compared GloSea5 hindcast data based EFI with anomaly data of ERA-Interim. The data also used to determine quantitative estimates of Probability Of Detection (POD), False Alarm Ratio (FAR), and spatial pattern correlation. The results showed that the area of ERA-Interim indicating above 4-degree temperature corresponded to the area of EFI 0.8 and above. POD showed high ratio (0.7 and 0.9, respectively), when ERA-Interim anomaly data were the highest (on Jul. 11, 1994 (> $5^{\circ}C$) and Aug. 8, 2003 (> $7^{\circ}C$), respectively). The spatial pattern showed a high correlation in the range of 0.5~0.9. However, the correlation decreased as the lead time increased. Furthermore, the case of Korea heat wave in 2018 was conducted using GloSea5 forecast data to validate EFI showed successful prediction for two to three weeks lead time. As a result, the EFI forecasts can be used to predict the probability that an extreme weather event of interest might occur. Overall, we expected these results to be available for extreme weather forecasting.

Predicting the Number of People for Meals of an Institutional Foodservice by Applying Machine Learning Methods: S City Hall Case (기계학습방법을 활용한 대형 집단급식소의 식수 예측: S시청 구내직원식당의 실데이터를 기반으로)

  • Jeon, Jongshik;Park, Eunju;Kwon, Ohbyung
    • Journal of the Korean Dietetic Association
    • /
    • v.25 no.1
    • /
    • pp.44-58
    • /
    • 2019
  • Predicting the number of meals in a foodservice organization is an important decision-making process that is essential for successful food production, such as reducing the amount of residue, preventing menu quality deterioration, and preventing rising costs. Compared to other demand forecasts, the menu of dietary personnel includes diverse menus, and various dietary supplements include a range of side dishes. In addition to the menus, diverse subjects for prediction are very difficult problems. Therefore, the purpose of this study was to establish a method for predicting the number of meals including predictive modeling and considering various factors in addition to menus which are actually used in the field. For this purpose, 63 variables in eight categories such as the daily available number of people for the meals, the number of people in the time series, daily menu details, weekdays or seasons, days before or after holidays, weather and temperature, holidays or year-end, and events were identified as decision variables. An ensemble model using six prediction models was then constructed to predict the number of meals. As a result, the prediction error rate was reduced from 10%~11% to approximately 6~7%, which was expected to reduce the residual amount by approximately 40%.

Probabilistic Medium- and Long-Term Reservoir Inflow Forecasts (II) Use of GDAPS for Ensemble Reservoir Inflow Forecasts (확률론적 중장기 댐 유입량 예측 (II) 앙상블 댐 유입량 예측을 위한 GDAPS 활용)

  • Kim, Jin-Hoon;Bae, Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.3 s.164
    • /
    • pp.275-288
    • /
    • 2006
  • This study develops ESP (Ensemble Streamflow Prediction) system by using medium-term numerical weather prediction model which is GDAPS(T213) of KMA. The developed system forecasts medium- and long-range exceedance Probability for streamflow and RPSS evaluation scheme is used to analyze the accuracy of probability forecasts. It can be seen that the daily probability forecast results contain high uncertainties. A sensitivity analysis with respect to forecast time resolution shows that uncertainties decrease and accuracy generally improves as the forecast time step increase. Weekly ESP results by using the GDAPS output with a lead time of up to 28 days are more accurately predicted than traditional ESP results because conditional probabilities are stably distributed and uncertainties can be reduced. Therefore, it can be concluded that the developed system will be useful tool for medium- and long-term reservoir inflow forecasts in order to manage water resources.