• 제목/요약/키워드: Ensemble model

검색결과 620건 처리시간 0.032초

Ensemble UNet 3+ for Medical Image Segmentation

  • JongJin, Park
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제15권1호
    • /
    • pp.269-274
    • /
    • 2023
  • In this paper, we proposed a new UNet 3+ model for medical image segmentation. The proposed ensemble(E) UNet 3+ model consists of UNet 3+s of varying depths into one unified architecture. UNet 3+s of varying depths have same encoder, but have their own decoders. They can bridge semantic gap between encoder and decoder nodes of UNet 3+. Deep supervision was used for learning on a total of 8 nodes of the E-UNet 3+ to improve performance. The proposed E-UNet 3+ model shows better segmentation results than those of the UNet 3+. As a result of the simulation, the E-UNet 3+ model using deep supervision was the best with loss function values of 0.8904 and 0.8562 for training and validation data. For the test data, the UNet 3+ model using deep supervision was the best with a value of 0.7406. Qualitative comparison of the simulation results shows the results of the proposed model are better than those of existing UNet 3+.

시계열 예측의 변형된 ENSEMBLE ALGORITHM (Time Series Forecasting Based on Modified Ensemble Algorithm)

  • 김연형;김재훈
    • 응용통계연구
    • /
    • 제18권1호
    • /
    • pp.137-146
    • /
    • 2005
  • 신경망은 전통적인 시계열 기법들에 비해 대체적으로 예측성능의 우수함이 입증되었으나 계절성과 추세성을 갖는 시계열자료에 대해 예측력이 떨어지는 단점을 가지고 있다. 최근에는 Ensemble 기법인 Bagging Algorithm과 신경망의 혼합모형인 Bagging Neural Network이 개밭되었다. 이 기법은 분산과 편향을 많이 줄여줌으로써 더 좋은 예측을 할 수 있는 것으로 나타났다. 그러나 Ensemble 기법을 이용한 예측모형은 시계열자료를 적합 시키는데 있어 초기부여확률 및 예측자 선정시의 문제점을 가지고 있다. 이에 본 연구에서는 이러한 문제점을 해결하고 더불어 예측력을 향상시키기 위한 방법으로 초기부여확률이 균일분포가 아닌 순차적인 형태의 분포를 제시하고 신경망을 예측자로 활용한 변형된 Ensemble Algorithm을 제안한다. 또한 예측모형의 평가를 위해 실제자료를 가지고 기존 예측모형들과 제안한 방법을 이용하여 예측하고 각 MSE의 비교를 통하여 예측정확도를 알아보고자 한다.

An Ensemble Approach to Detect Fake News Spreaders on Twitter

  • Sarwar, Muhammad Nabeel;UlAmin, Riaz;Jabeen, Sidra
    • International Journal of Computer Science & Network Security
    • /
    • 제22권5호
    • /
    • pp.294-302
    • /
    • 2022
  • Detection of fake news is a complex and a challenging task. Generation of fake news is very hard to stop, only steps to control its circulation may help in minimizing its impacts. Humans tend to believe in misleading false information. Researcher started with social media sites to categorize in terms of real or fake news. False information misleads any individual or an organization that may cause of big failure and any financial loss. Automatic system for detection of false information circulating on social media is an emerging area of research. It is gaining attention of both industry and academia since US presidential elections 2016. Fake news has negative and severe effects on individuals and organizations elongating its hostile effects on the society. Prediction of fake news in timely manner is important. This research focuses on detection of fake news spreaders. In this context, overall, 6 models are developed during this research, trained and tested with dataset of PAN 2020. Four approaches N-gram based; user statistics-based models are trained with different values of hyper parameters. Extensive grid search with cross validation is applied in each machine learning model. In N-gram based models, out of numerous machine learning models this research focused on better results yielding algorithms, assessed by deep reading of state-of-the-art related work in the field. For better accuracy, author aimed at developing models using Random Forest, Logistic Regression, SVM, and XGBoost. All four machine learning algorithms were trained with cross validated grid search hyper parameters. Advantages of this research over previous work is user statistics-based model and then ensemble learning model. Which were designed in a way to help classifying Twitter users as fake news spreader or not with highest reliability. User statistical model used 17 features, on the basis of which it categorized a Twitter user as malicious. New dataset based on predictions of machine learning models was constructed. And then Three techniques of simple mean, logistic regression and random forest in combination with ensemble model is applied. Logistic regression combined in ensemble model gave best training and testing results, achieving an accuracy of 72%.

헬리콥터 주로터 블레이드 동적밸런싱 시험을 위한 조절변수 최적화 연구 (A Study on Adjustment Optimization for Dynamic Balancing Test of Helicopter Main Rotor Blade)

  • 송근웅;최종수
    • 한국소음진동공학회논문집
    • /
    • 제26권6_spc호
    • /
    • pp.736-743
    • /
    • 2016
  • This study describes optimization methods for adjustment of helicopter main rotor tracking and balancing (RTB). RTB is a essential process for helicopter operation and maintenance. Linear and non-linear models were developed with past RTB test results for estimation of RTB adjustment. Then global and sequential optimization methods were applied to the each of models. Utilization of the individual optimization method with each model is hard to fulfill the RTB requirements because of different characteristics of each blade. Therefore an ensemble model was used to integrate every estimated adjustment result, and an adaptive method was also applied to adjustment values of the linear model to update for next estimations. The goal of this developed RTB adjustment optimization program is to achieve the requirements within 2 run. Additional tests for comparison of weight factor of the ensemble model are however necessary.

Ensemble techniques and hybrid intelligence algorithms for shear strength prediction of squat reinforced concrete walls

  • Mohammad Sadegh Barkhordari;Leonardo M. Massone
    • Advances in Computational Design
    • /
    • 제8권1호
    • /
    • pp.37-59
    • /
    • 2023
  • Squat reinforced concrete (SRC) shear walls are a critical part of the structure for both office/residential buildings and nuclear structures due to their significant role in withstanding seismic loads. Despite this, empirical formulae in current design standards and published studies demonstrate a considerable disparity in predicting SRC wall shear strength. The goal of this research is to develop and evaluate hybrid and ensemble artificial neural network (ANN) models. State-of-the-art population-based algorithms are used in this research for hybrid intelligence algorithms. Six models are developed, including Honey Badger Algorithm (HBA) with ANN (HBA-ANN), Hunger Games Search with ANN (HGS-ANN), fitness-distance balance coyote optimization algorithm (FDB-COA) with ANN (FDB-COA-ANN), Averaging Ensemble (AE) neural network, Snapshot Ensemble (SE) neural network, and Stacked Generalization (SG) ensemble neural network. A total of 434 test results of SRC walls is utilized to train and assess the models. The results reveal that the SG model not only minimizes prediction variance but also produces predictions (with R2= 0.99) that are superior to other models.

Sparsity Increases Uncertainty Estimation in Deep Ensemble

  • Dorjsembe, Uyanga;Lee, Ju Hong;Choi, Bumghi;Song, Jae Won
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 춘계학술발표대회
    • /
    • pp.373-376
    • /
    • 2021
  • Deep neural networks have achieved almost human-level results in various tasks and have become popular in the broad artificial intelligence domains. Uncertainty estimation is an on-demand task caused by the black-box point estimation behavior of deep learning. The deep ensemble provides increased accuracy and estimated uncertainty; however, linearly increasing the size makes the deep ensemble unfeasible for memory-intensive tasks. To address this problem, we used model pruning and quantization with a deep ensemble and analyzed the effect in the context of uncertainty metrics. We empirically showed that the ensemble members' disagreement increases with pruning, making models sparser by zeroing irrelevant parameters. Increased disagreement implies increased uncertainty, which helps in making more robust predictions. Accordingly, an energy-efficient compressed deep ensemble is appropriate for memory-intensive and uncertainty-aware tasks.

Anomaly-Based Network Intrusion Detection: An Approach Using Ensemble-Based Machine Learning Algorithm

  • Kashif Gul Chachar;Syed Nadeem Ahsan
    • International Journal of Computer Science & Network Security
    • /
    • 제24권1호
    • /
    • pp.107-118
    • /
    • 2024
  • With the seamless growth of the technology, network usage requirements are expanding day by day. The majority of electronic devices are capable of communication, which strongly requires a secure and reliable network. Network-based intrusion detection systems (NIDS) is a new method for preventing and alerting computers and networks from attacks. Machine Learning is an emerging field that provides a variety of ways to implement effective network intrusion detection systems (NIDS). Bagging and Boosting are two ensemble ML techniques, renowned for better performance in the learning and classification process. In this paper, the study provides a detailed literature review of the past work done and proposed a novel ensemble approach to develop a NIDS system based on the voting method using bagging and boosting ensemble techniques. The test results demonstrate that the ensemble of bagging and boosting through voting exhibits the highest classification accuracy of 99.98% and a minimum false positive rate (FPR) on both datasets. Although the model building time is average which can be a tradeoff by processor speed.

앙상블 칼만필터를 연계한 추계학적 연속형 저류함수모형 (II) : - 적용 및 검증 - (Stochastic Continuous Storage Function Model with Ensemble Kalman Filtering (II) : Application and Verification)

  • 이병주;배덕효
    • 한국수자원학회논문집
    • /
    • 제42권11호
    • /
    • pp.963-972
    • /
    • 2009
  • 본 연구의 목적은 앙상블 칼만필터 기법과 연속형 저류함수모형을 연계하여 개발한 추계학적 연속형 저류함수모형의 적용성을 평가하고자 하는데 있다. 대상유역은 안동댐과 임하댐을 포함하는 지보 수위관측소 상류유역을 선정하였으며 2006년과 2007년 홍수기에 대해 분석을 수행하였다. 확정론적 모형을 적용한 결과 장기간의 모의기간에 대해 유출해석이 가능한 것을 확인하였다. 앙상블 칼만필터 기법을 적용하기 위해 Monte Carlo 모의기법을 적용하여 모형입력자료와 매개변수들에 대해 앙상블 멤버를 생성하였다. 추계학적 모형과 확정론적 모형의 누적절대오차를 비교한 결과 안동댐과 임하댐의 2007년 사상에서 각각 17.5 %와 18.3 %의 정확도가 향상되고 지보수위관측소에서는 40 % 이상의 정확도가 향상되는 것으로 나타났다. 이상의 결과로부터 관측유량과의 오차가 큰 모의결과에 있어서는 추계학적 모형이 보다 향상된 결과를 도출하는 것을 확인하였다.

미국 금리 스프레드를 이용한 한국 금리 스프레드 예측 모델에 관한 연구 : SVR-앙상블(RNN, LSTM, GRU) 모델 기반 (A Study on the Korean Interest Rate Spread Prediction Model Using the US Interest Rate Spread : SVR-Ensemble (RNN, LSTM, GRU) Model based)

  • 정순호;김영후;송명진;정윤재;고성석
    • 산업경영시스템학회지
    • /
    • 제43권3호
    • /
    • pp.1-9
    • /
    • 2020
  • Interest rate spreads indicate the conditions of the economy and serve as an indicator of the recession. The purpose of this study is to predict Korea's interest rate spreads using US data with long-term continuity. To this end, 27 US economic data were used, and the entire data was reduced to 5 dimensions through principal component analysis to build a dataset necessary for prediction. In the prediction model of this study, three RNN models (BasicRNN, LSTM, and GRU) predict the US interest rate spread and use the predicted results in the SVR ensemble model to predict the Korean interest rate spread. The SVR ensemble model predicted Korea's interest rate spread as RMSE 0.0658, which showed more accurate predictive power than the general ensemble model predicted as RMSE 0.0905, and showed excellent performance in terms of tendency to respond to fluctuations. In addition, improved prediction performance was confirmed through period division according to policy changes. This study presented a new way to predict interest rates and yielded better results. We predict that if you use refined data that represents the global economic situation through follow-up studies, you will be able to show higher interest rate predictions and predict economic conditions in Korea as well as other countries.

Pareto RBF network ensemble using multi-objective evolutionary computation

  • Kondo, Nobuhiko;Hatanaka, Toshiharu;Uosaki, Katsuji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.925-930
    • /
    • 2005
  • In this paper, evolutionary multi-objective selection method of RBF networks structure is considered. The candidates of RBF network structure are encoded into the chromosomes in GAs. Then, they evolve toward Pareto-optimal front defined by several objective functions concerning with model accuracy and model complexity. An ensemble network constructed by such Pareto-optimal models is also considered in this paper. Some numerical simulation results indicate that the ensemble network is much robust for the case of existence of outliers or lack of data, than one selected in the sense of information criteria.

  • PDF