• 제목/요약/키워드: Ensemble expansion

검색결과 20건 처리시간 0.029초

기상청 기후예측시스템(GloSea)의 앙상블 확대를 통해 살펴본 신호대잡음의 역설적 특징(Signal-to-Noise Paradox)과 예측 스킬의 한계 (Characteristics of Signal-to-Noise Paradox and Limits of Potential Predictive Skill in the KMA's Climate Prediction System (GloSea) through Ensemble Expansion)

  • 현유경;박연희;이조한;지희숙;부경온
    • 대기
    • /
    • 제34권1호
    • /
    • pp.55-67
    • /
    • 2024
  • This paper aims to provide a detailed introduction to the concept of the Ratio of Predictable Component (RPC) and the Signal-to-Noise Paradox. Then, we derive insights from them by exploring the paradoxical features by conducting a seasonal and regional analysis through ensemble expansion in KMA's climate prediction system (GloSea). We also provide an explanation of the ensemble generation method, with a specific focus on stochastic physics. Through this study, we can provide the predictability limits of our forecasting system, and find way to enhance it. On a global scale, RPC reaches a value of 1 when the ensemble is expanded to a maximum of 56 members, underlining the significance of ensemble expansion in the climate prediction system. The feature indicating RPC paradoxically exceeding 1 becomes particularly evident in the winter North Atlantic and the summer North Pacific. In the Siberian Continent, predictability is notably low, persisting even as the ensemble size increases. This region, characterized by a low RPC, is considered challenging for making reliable predictions, highlighting the need for further improvement in the model and initialization processes related to land processes. In contrast, the tropical ocean demonstrates robust predictability while maintaining an RPC of 1. Through this study, we have brought to attention the limitations of potential predictability within the climate prediction system, emphasizing the necessity of leveraging predictable signals with high RPC values. We also underscore the importance of continuous efforts aimed at improving models and initializations to overcome these limitations.

분자동역학(MD) 시뮬레이션을 이용한 조암광물의 열팽창 계수 산정 (Calculations of the Thermal Expansion Coefficient for Rock-Forming Minerals Using Molecular Dynamics (MD) Simulation)

  • 서용석;배규진
    • 지질공학
    • /
    • 제11권3호
    • /
    • pp.269-278
    • /
    • 2001
  • MD 시뮬레이션을 이용하여 $\alpha$-quartz, 백운모, 조장석의 열팽창계수를 산정하였다. MD 시뮬레이션에서 가장 중요한 포텐셜 함수로는 부분이온성 두입자간 포텐셜을 이용하였다. 열팽창계수는 격자구조의 온도에 따라 변화를 NPT-ensemble 시뮬레이션을 통하여 계산하여 산정하였으며 그 결과를 실험결과와 비교하였다. 시뮬레이션을 통하여 산정된 열팽창계수는 시험결과와 잘 일치하고 있으며, 유효한 수준의 결과를 보이고 있다.

  • PDF

Developing efficient model updating approaches for different structural complexity - an ensemble learning and uncertainty quantifications

  • Lin, Guangwei;Zhang, Yi;Liao, Qinzhuo
    • Smart Structures and Systems
    • /
    • 제29권2호
    • /
    • pp.321-336
    • /
    • 2022
  • Model uncertainty is a key factor that could influence the accuracy and reliability of numerical model-based analysis. It is necessary to acquire an appropriate updating approach which could search and determine the realistic model parameter values from measurements. In this paper, the Bayesian model updating theory combined with the transitional Markov chain Monte Carlo (TMCMC) method and K-means cluster analysis is utilized in the updating of the structural model parameters. Kriging and polynomial chaos expansion (PCE) are employed to generate surrogate models to reduce the computational burden in TMCMC. The selected updating approaches are applied to three structural examples with different complexity, including a two-storey frame, a ten-storey frame, and the national stadium model. These models stand for the low-dimensional linear model, the high-dimensional linear model, and the nonlinear model, respectively. The performances of updating in these three models are assessed in terms of the prediction uncertainty, numerical efforts, and prior information. This study also investigates the updating scenarios using the analytical approach and surrogate models. The uncertainty quantification in the Bayesian approach is further discussed to verify the validity and accuracy of the surrogate models. Finally, the advantages and limitations of the surrogate model-based updating approaches are discussed for different structural complexity. The possibility of utilizing the boosting algorithm as an ensemble learning method for improving the surrogate models is also presented.

토양수분과 식생 스트레스 동역학에 기후변화가 미치는 영향 (The Impact of Climate Change on the Dynamics of Soil Water and Plant Water Stress)

  • 한수희;김상단
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2009년도 학술발표회 초록집
    • /
    • pp.52-56
    • /
    • 2009
  • In this study a dynamic modeling scheme is presented to derive the probabilistic structure of soil water and plant water stress when subject to stochastic precipitation conditions. The newly developed model has the form of the Fokker-Planck equation, and its applicability as a model for the probabilistic evolution of the soil water and plant water stress is investigated under climate change scenarios. This model is based on the cumulant expansion theory, and has the advantage of providing the probabilistic solution in the form of probability distribution function (PDF), from which one can obtain the ensemble average behavior of the dynamics. The simulation result of soil water confirms that the proposed soil water model can properly reproduce the results obtained from observations, and it also proves that the soil water behaves with consistent cycle based on the precipitation pattern. The plant water stress simulation, also, shows two different PDF patterns according to the precipitation. Moreover, with all the simulation results with climate change scenarios, it can be concluded that the future soil water and plant water stress dynamics will differently behave with different climate change scenarios.

  • PDF

평면 제트류 응집구조의 근사적 표현에 관한 연구 (Approximation for the coherent structures in the planar jet flow)

  • 이찬희;이상환
    • 대한기계학회논문집
    • /
    • 제19권3호
    • /
    • pp.751-762
    • /
    • 1995
  • The snapshot method is introduced to approximate the coherent structures of planar jet flow. The numerical simulation of instantaneous flow field is analyzed by SIMPLE algorithm. An ensemble of realizations is collected using a sampling condition that corresponds to the passage of a large scale vortex at positions 4 and 6 diameters downstream from the nozzle. With snapshot mothod we could treat the data efficiently and approximate coherent structures inhered in the planar jet flow successfully 94% of total turbulent kinetic energy with 10 terms of Karhunen-Loeve expansions. Finally, In accordance with the recent trend to try to explain and model turbulence phenomena with the existence of coherent structures, in the present study, we express the underlying coherent structures of planar jet flow in the minimum number of modes by calculating Karhunen-Loeve expansions in order to improve to understanding of jet flow and to make the information storage and management in computers easier.

Car-Parrinello Molecular Dynamics Study for the Isotope Effect on OH Vibration in Ice Ih

  • Yoon, Yeohoon
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권2호
    • /
    • pp.553-557
    • /
    • 2013
  • The stretching vibration of OH of ice Ih is studied by Car-Parrinello molecular dynamics in regarding the effect of mixed H/D contamination while the vibrational spectrum is considered by velocity-velocity autocorrelations of the sampled ensemble. When hydrogen atoms are immersed randomly into the deuterated ice, a typical vibrational frequency of OH stretching mode is observed to be similar to that from the pure $H_2O$ ice. When focusing on the correlation of isolated neighboring OH stretching, a narrower and blue shifted peak is observed at the high frequency range as a result of the screening from the complex many body correlations by $D_2O$ environment. It is also specifically related to the symmetric intermolecular correlations between neighboring OH stretching modes. More enhanced high frequency range can be explained by the expansion of such two body correlations to collective many body correlations among all possible OH stretching modes. This contribution becomes important when it involves in chemical interactions via excitation of such vibrational states.

모바일 헬스 서비스 사용자 특성 분석 및 이탈 예측 모델 개발 (Mobile health service user characteristics analysis and churn prediction model development)

  • 한정현;이주연
    • 시스템엔지니어링학술지
    • /
    • 제17권2호
    • /
    • pp.98-105
    • /
    • 2021
  • As the average life expectancy is rising, the population is aging and the number of chronic diseases is increasing. This has increased the importance of healthy life and health management, and interest in mobile health services is on the rise thanks to the development of ICT(Information and communication technologies) and the smartphone use expansion. In order to meet these interests, many mobile services related to daily health are being launched in the market. Therefore, in this study, the characteristics of users who actually use mobile health services were analyzed and a predictive model applied with machine learning modeling was developed. As a result of the study, we developed a prediction model to which the decision tree and ensemble methods were applied. And it was found that the mobile health service users' continued use can be induced by providing features that require frequent visit, suggesting achievable activity missions, and guiding the sensor connection for user's activity measurement.

통합적인 인공 신경망 모델을 이용한 발틱운임지수 예측 (Predicting the Baltic Dry Bulk Freight Index Using an Ensemble Neural Network Model)

  • 소막
    • 무역학회지
    • /
    • 제48권2호
    • /
    • pp.27-43
    • /
    • 2023
  • 해양 산업은 글로벌 경제 성장에 매우 중요한 역할을 하고 있다. 특히 벌크운임지수인 BDI는 글로벌 상품 가격과 매우 밀접한 상관 관계를 지니고 있기 때문에 BDI 예측 연구의 중요성이 증가하고 있다. 본연구에서는 글로벌 시장 상황 불안정성으로 인한 정확한 BDI 예측 어려움을 해결하고자 머신러닝 전략을 도입하였다. CNN과 LSTM의 이점을 결합한 예측 모델을 설정하였고, 모델 적합도를 위해 27년간의 일일 BDI 데이터를 수집하였다. 연구 결과, CNN을 통해 추출된 BDI 특징을 기반으로 LSTM이 BDI를 R2 값 94.7%로 정확하게 예측할 수 있었다. 본 연구는 해운 경제지표 연구 분야에서 새로운 머신 러닝 통합 접근법을 적용했을 뿐만 아니라 해운 관련기관과 금융 투자 분야의 위험 관리 의사결정에 대한 시사점을 제공한다는 점에서 그 의의가 있다.

머신러닝을 이용한 공연문화예술 개인화 장르 추천 시스템 (A Personalized Recommendation System Using Machine Learning for Performing Arts Genre)

  • 김형수;박예린;이정민
    • 경영정보학연구
    • /
    • 제21권4호
    • /
    • pp.31-45
    • /
    • 2019
  • 공연문화예술 시장의 확대에도 불구하고, 중소규모 공연장은 소비자의 정보 접근성이 좋지 않아 어려움을 겪고 있다. 본 연구는 중소규모 공연장의 마케팅 역량을 강화할 수 있는 하나의 대안으로써 머신러닝 기반의 장르 추천 시스템을 제시하고자 한다. 국내 한 공연장의 고객 마스터 DB와 거래이력 DB를 활용하여 고객당 3개의 장르를 추천하는 5개의 추천 시스템을 개발하였다. 추천시점 이후 1년 동안의 실제 공연구매 이력을 바탕으로 추천 시스템의 성능을 비교하여 최적의 추천시스템을 제안하였다. 분석 결과, 단일 예측모형보다는 앙상블 모형 기반의 추천시스템이 우수한 성능을 보이는 것으로 나타났다. 본 연구는 공연문화예술 분야에는 일천했던 개인화 추천 기법을 적용했고, 분석 결과 공연문화예술 분야에서도 충분히 활용할 만한 가치가 있음을 시사하고 있다.

앙상블 기반의 악취 농도 다지역 통합 예측 모델 개발 (Development of an Ensemble-Based Multi-Region Integrated Odor Concentration Prediction Model)

  • 조성주;최우석;최상현
    • 지능정보연구
    • /
    • 제29권3호
    • /
    • pp.383-400
    • /
    • 2023
  • 전 세계적으로 대기오염 관련 질병 발병률이 상승하고, 2022년 세계보건기구의 보고에 따르면 매년 약 700만 명의 사망자가 발생하고 있다. 또한, 산업 시설 확장과 다양한 배출원 증가, 그리고 악취 물질의 무분별한 방출로 인해 대기오염 문제는 사회적으로 중요성을 띄고 있다. 한국에서도 악취를 독립적인 환경오염으로 정의하며, 지역 주민의 건강에 직접적인 영향을 미치는 문제로 간주하고 있으나 현재까지 악취 관리가 미흡하며 악취 관리 시스템의 개선이 필요하다. 본 연구에서는 악취 관리 시스템 개선을 목표로 충청북도 오창에 설치된 악취 센서에서 수집한 1,010,749개 데이터를 활용하여 앙상블 기반의 악취 농도 다지역 통합 예측 모델을 설계하고 분석하였다. 연구 결과, XGBoost 알고리즘을 사용한 모델의 RMSE가 0.0096로 가장 성능이 좋았으며, 단일 지역 모델(0.0146)과 비교하여 평균 오차 크기가 51.9% 낮았다. 이를 통해 서로 다른 지역에서 수집된 악취 농도 데이터를 표준화한 후 다지역 통합 예측 모델을 설계함으로써 데이터의 양을 늘리고 정확도를 높일 수 있으며 또한, 하나의 통합 모델로 다양한 지역에서 예측이 가능함을 확인하였다.