• 제목/요약/키워드: Ensemble decision tree

검색결과 73건 처리시간 0.02초

악성코드 패밀리 분류를 위한 API 특징 기반 앙상블 모델 학습 (API Feature Based Ensemble Model for Malware Family Classification)

  • 이현종;어성율;황두성
    • 정보보호학회논문지
    • /
    • 제29권3호
    • /
    • pp.531-539
    • /
    • 2019
  • 본 논문에서는 악성코드 패밀리 분류를 위한 훈련 데이터의 특징을 제안하고, 앙상블 모델을 이용한 다중 분류 성능을 분석한다. 악성코드 실행 파일로부터 API와 DLL 데이터를 추출하여 훈련 데이터를 구성하며, 의사 결정 트리기반 Random Forest와 XGBoost 알고리즘으로 모델을 학습한다. 악성코드에서 빈번히 사용되는 API와 DLL 정보를 분석하며, 고차원의 훈련 데이터 특징을 저차원의 특징 표현으로 변환시켜, 악성코드 탐지와 패밀리 분류를 위한 API, API-DLL, DLL-CM 특징을 제안한다. 제안된 특징 선택 방법은 데이터 차원 축소와 빠른 학습의 장점을 제공한다. 성능 비교에서 악성코드 탐지율은 Random Forest가 93.0%, 악성코드 패밀리 분류 정확도는 XGBoost가 92.0%, 그리고 정상코드를 포함하는 테스트 오탐률은 Random Forest와 XGBoost가 3.5%이다.

Real-time prediction on the slurry concentration of cutter suction dredgers using an ensemble learning algorithm

  • Han, Shuai;Li, Mingchao;Li, Heng;Tian, Huijing;Qin, Liang;Li, Jinfeng
    • 국제학술발표논문집
    • /
    • The 8th International Conference on Construction Engineering and Project Management
    • /
    • pp.463-481
    • /
    • 2020
  • Cutter suction dredgers (CSDs) are widely used in various dredging constructions such as channel excavation, wharf construction, and reef construction. During a CSD construction, the main operation is to control the swing speed of cutter to keep the slurry concentration in a proper range. However, the slurry concentration cannot be monitored in real-time, i.e., there is a "time-lag effect" in the log of slurry concentration, making it difficult for operators to make the optimal decision on controlling. Concerning this issue, a solution scheme that using real-time monitored indicators to predict current slurry concentration is proposed in this research. The characteristics of the CSD monitoring data are first studied, and a set of preprocessing methods are presented. Then we put forward the concept of "index class" to select the important indices. Finally, an ensemble learning algorithm is set up to fit the relationship between the slurry concentration and the indices of the index classes. In the experiment, log data over seven days of a practical dredging construction is collected. For comparison, the Deep Neural Network (DNN), Long Short Time Memory (LSTM), Support Vector Machine (SVM), Random Forest (RF), Gradient Boosting Decision Tree (GBDT), and the Bayesian Ridge algorithm are tried. The results show that our method has the best performance with an R2 of 0.886 and a mean square error (MSE) of 5.538. This research provides an effective way for real-time predicting the slurry concentration of CSDs and can help to improve the stationarity and production efficiency of dredging construction.

  • PDF

연속형 반응변수를 위한 데이터마이닝 방법 성능 향상 연구 (A study for improving data mining methods for continuous response variables)

  • 최진수;이석형;조형준
    • Journal of the Korean Data and Information Science Society
    • /
    • 제21권5호
    • /
    • pp.917-926
    • /
    • 2010
  • 배깅과 부스팅의 기법은 예측력을 향상 시킨다고 알려져 있다. 이는 비교 실험을 통하여 성능이 검증 되었는데, 목표변수가 범주형인 경우에 특정 의사결정나무 알고리즘인 회귀분류나무만 주로 고려되었다. 본 논문에서는 의사결정나무 외에도 다른 데이터마이닝 방법도 고려하여 목표변수가 연속형인 경우에 배깅과 부스팅 기법의 성능 검증을 위한 비교 실험을 실시하였다. 구체적으로, 데이터마이닝 알고리즘 기법인 선형회귀, 의사결정나무, 신경망에 배깅 및 부스팅 앙상블 기법을 결합하여 8개의 데이터를 비교 분석하였다. 실험 결과로 연속형 자료에 대한 여러 데이터마이닝 알고리즘에도 배깅과 부스팅의 기법이 성능 향상에 도움이 되는 것으로 확인되었다.

부스팅 트리에서 적정 트리사이즈의 선택에 관한 연구 (The guideline for choosing the right-size of tree for boosting algorithm)

  • 김아현;김지현;김현중
    • Journal of the Korean Data and Information Science Society
    • /
    • 제23권5호
    • /
    • pp.949-959
    • /
    • 2012
  • 범주형 목표변수를 잘 예측하기 위한 데이터마이닝 방법 중에서 최근에는 여러 단일 분류자를 결합한 앙상블 기법이 많이 활용되고 있다. 앙상블 기법 가운데 부스팅은 재표본 시 분류하기 어려운 관찰치의 가중치를 높여 분류자가 해당 관찰치에 보다 집중할 수 있도록 함으로써 다른 앙상블 기법에 비해 오차를 효과적으로 감소시키는 방법으로 알려져 있다. 부스팅을 구성하는 분류자를 의사결정나무로 둔 부스팅 트리 모형의 경우 각 트리의 사이즈를 결정해야 하는데, 본 연구에서는 자료 별로 부스팅 트리에 가장 적합한 트리사이즈가 서로 다를수 있다고 가정하고, 주어진 자료에 맞는 트리사이즈를 추정하는 문제에 대해 논의하였다. 우선 트리사이즈가 부스팅 트리의 정확도에 중요한 영향을 미치는가를 파악하기 위하여 28개의 자료를 대상으로 실험을 수행하였으며, 그 결과 트리사이즈를 결정하는 문제가 모형 전체의 성능을 결정하는데 상당한 역할을 한다는 것을 확인할 수 있었다. 또한 그 결과를 바탕으로 최적의 트리사이즈에 영향을 미칠 것으로 판단되는 몇 가지 특성 변수를 정의하고, 해당 변수를 이용하여 부스팅 트리에서의 최적 트리사이즈를 설명하는 모형을 구성해 보았다. 자료 별로 고유한 최적의 트리사이즈는 자료의 특성에 의존적일 가능성도 있으므로 본 연구에서 제안하는 추정방법은 최적 트리사이즈를 결정하기 위한 출발점 또는 가이드라인으로 활용하는 것이 적절할 것이다. 기존에는 부스팅 트리의 사이즈에 대한 값으로 목표변수의 범주의 개수를 활용하였는데, 본 모형에서 제안하는 트리사이즈의 추정치로 부스팅 트리를 구축한 경우 기존방법에 비해 분류정확도를 유의미하게 개선하는 것을 확인할 수 있었다.

개선된 휴리스틱 규칙 및 의사 결정 트리 분석을 이용한 P2P 트래픽 분류 기법 (P2P Traffic Classification using Advanced Heuristic Rules and Analysis of Decision Tree Algorithms)

  • 예우지엔;조경산
    • 한국컴퓨터정보학회논문지
    • /
    • 제19권3호
    • /
    • pp.45-54
    • /
    • 2014
  • 본 논문에서는 기존 기법들의 제한점을 개선하기 위해 휴리스틱 규칙 및 기계학습 분석 결과를 이용한 두 단계의 P2P 트래픽 분류 기법을 제안한다. 첫 번째 단계는 패킷 레벨의 시그니처 기반 분류기이고, 두 번째 단계는 플로우 레벨에서 수행되는 패턴 휴리스틱 규칙 및 통계 기반 분류기이다. 제안된 패턴 휴리스틱 규칙은 분류의 정확도를 높이고 통계 기반 분류기가 처리할 트래픽의 양을 줄일 수 있다. 다양한 의사 결정 트리 알고리즘의 분석을 기반으로 통계 기반 분류기는 가장 효율적인 REPTree로 구현하고, 앙상블 알고리즘을 통해 통계 기반 분류기의 성능을 개선한다. 실제 환경의 데이터 집합을 이용한 검증 분석을 통해, 본 제안 기법이 기존 기법에 비해 높은 정확도와 낮은 과부하를 제공함을 제시한다.

데이터마이닝 기법을 활용한 맞춤형 고혈압 사후관리 모형 개발 (A Development of a Tailored Follow up Management Model Using the Data Mining Technique on Hypertension)

  • 박일수;용왕식;김유미;강성홍;한준태
    • 응용통계연구
    • /
    • 제21권4호
    • /
    • pp.639-647
    • /
    • 2008
  • 본 연구는 국민건강보험공단의 건강검진데이터, 자격 및 보험료 그리고 진료비 데이터를 활용하여 고혈압 관리를 위한 맞춤형 고혈압 사후관리모형(고혈압 진료예측모형 및 고혈압 진료순응도세분화모형)을 개발하고자 하였다. 모형 개발에는 데이터마이닝의 로지스틱 회귀모형, 의사결정나무 그리고 앙상블 모형을 활용하였다. 고혈압 진료예측모형에서는 3가지 모형 중 로지스틱 회귀모형이 가장 우수한 모형으로 채택되었으며, 고혈압 진료순응도세분화모형은 의사결정나무모형을 통해 개발되었다. 본 연구는 전국 규모의 수년간 축적된 자료를 데이터마이닝을 활용함으로써 고혈압의 진료 및 진료순응도에 이르는 고혈압 사후관리 프로세스 전반에 걸친 결과를 도출함으로써 우리나라 고혈압 사후관리체계 구축에 기여할 것으로 사료된다.

머신러닝 기반 KOSDAQ 시장의 관리종목 지정 예측 연구: 재무적 데이터를 중심으로 (Study on Predicting the Designation of Administrative Issue in the KOSDAQ Market Based on Machine Learning Based on Financial Data)

  • 윤양현;김태경;김수영
    • 벤처창업연구
    • /
    • 제17권1호
    • /
    • pp.229-249
    • /
    • 2022
  • 본 연구는 다양한 머신러닝 기법을 통해 코스닥(KOSDAQ) 시장 내 관리종목 지정을 예측할 수 있는 모델에 대해 연구하였다. 증권시장 내 기업이 관리종목으로 지정이 되면 시장에서는 이를 부정적인 정보로 인식하여 해당 기업과 투자자에게 손실을 가져오게 된다. 본 연구를 통해 기업의 재무적 데이터를 바탕으로 조기에 관리종목 지정을 예측하고, 투자자들의 포트폴리오 리스크 관리에 도움을 주기 위한 머신러닝 접근이 타당한지 살펴본다. 본 연구를 위해 활용한 독립변수는 수익성, 안정성, 활동성, 성장성을 나타내는 21개의 재무비율을 활용하였으며, K-IFRS가 적용된 2011년부터 2020년까지 관리종목과 비관리종목의 기업의 재무 데이터를 표본으로 추출하였다. 로지스틱 회귀분석, 의사결정나무, 서포트 벡터 머신, 랜덤 포레스트, LightGBM을 활용하여 관리종목 지정 예측 연구를 수행하였다. 연구결과는 분류 정확도가 82.73%인 LightGBM이 가장 우수한 예측 모형이었으며 분류 정확도가 가장 낮은 예측 모형은 정확도가 71.94%인 의사결정나무였다. 의사결정나무 기반 학습 모형의 변수 중요도의 상위 3개 변수를 확인한 결과 각 모형에서 공통적으로 나온 재무변수는 ROE(당기순이익), 자본금회전율(Capital stock turnover ratio)로 해당 재무변수가 관리종목 지정에 있어 상대적으로 중요한 변수임을 확인하였다. 대체적으로 앙상블을 이용한 학습 모형이 단일 학습 모형보다 예측 성능이 높은 것을 확인하였다. 기존 선행연구가 K-IFRS에 대한 고려를 하지 않았고, 다소 제한된 머신러닝에 의존하였다. 따라서 본 연구의 필요성과 함께 현실적 요구를 충족시키는 결과를 제시하였음을 알 수 있으며, 시장참여자들에게 있어 관리종목 지정에 대한 사전 예측을 확인할 수 있도록 기여했다고 볼 수 있다.

딥러닝과 앙상블 머신러닝 모형의 하천 탁도 예측 특성 비교 연구 (Comparative characteristic of ensemble machine learning and deep learning models for turbidity prediction in a river)

  • 박정수
    • 상하수도학회지
    • /
    • 제35권1호
    • /
    • pp.83-91
    • /
    • 2021
  • The increased turbidity in rivers during flood events has various effects on water environmental management, including drinking water supply systems. Thus, prediction of turbid water is essential for water environmental management. Recently, various advanced machine learning algorithms have been increasingly used in water environmental management. Ensemble machine learning algorithms such as random forest (RF) and gradient boosting decision tree (GBDT) are some of the most popular machine learning algorithms used for water environmental management, along with deep learning algorithms such as recurrent neural networks. In this study GBDT, an ensemble machine learning algorithm, and gated recurrent unit (GRU), a recurrent neural networks algorithm, are used for model development to predict turbidity in a river. The observation frequencies of input data used for the model were 2, 4, 8, 24, 48, 120 and 168 h. The root-mean-square error-observations standard deviation ratio (RSR) of GRU and GBDT ranges between 0.182~0.766 and 0.400~0.683, respectively. Both models show similar prediction accuracy with RSR of 0.682 for GRU and 0.683 for GBDT. The GRU shows better prediction accuracy when the observation frequency is relatively short (i.e., 2, 4, and 8 h) where GBDT shows better prediction accuracy when the observation frequency is relatively long (i.e. 48, 120, 160 h). The results suggest that the characteristics of input data should be considered to develop an appropriate model to predict turbidity.

앙상블 머신러닝 모형을 이용한 하천 녹조발생 예측모형의 입력변수 특성에 따른 성능 영향 (Effect of input variable characteristics on the performance of an ensemble machine learning model for algal bloom prediction)

  • 강병구;박정수
    • 상하수도학회지
    • /
    • 제35권6호
    • /
    • pp.417-424
    • /
    • 2021
  • Algal bloom is an ongoing issue in the management of freshwater systems for drinking water supply, and the chlorophyll-a concentration is commonly used to represent the status of algal bloom. Thus, the prediction of chlorophyll-a concentration is essential for the proper management of water quality. However, the chlorophyll-a concentration is affected by various water quality and environmental factors, so the prediction of its concentration is not an easy task. In recent years, many advanced machine learning algorithms have increasingly been used for the development of surrogate models to prediction the chlorophyll-a concentration in freshwater systems such as rivers or reservoirs. This study used a light gradient boosting machine(LightGBM), a gradient boosting decision tree algorithm, to develop an ensemble machine learning model to predict chlorophyll-a concentration. The field water quality data observed at Daecheong Lake, obtained from the real-time water information system in Korea, were used for the development of the model. The data include temperature, pH, electric conductivity, dissolved oxygen, total organic carbon, total nitrogen, total phosphorus, and chlorophyll-a. First, a LightGBM model was developed to predict the chlorophyll-a concentration by using the other seven items as independent input variables. Second, the time-lagged values of all the input variables were added as input variables to understand the effect of time lag of input variables on model performance. The time lag (i) ranges from 1 to 50 days. The model performance was evaluated using three indices, root mean squared error-observation standard deviation ration (RSR), Nash-Sutcliffe coefficient of efficiency (NSE) and mean absolute error (MAE). The model showed the best performance by adding a dataset with a one-day time lag (i=1) where RSR, NSE, and MAE were 0.359, 0.871 and 1.510, respectively. The improvement of model performance was observed when a dataset with a time lag up of about 15 days (i=15) was added.

Ensemble Deep Learning Model using Random Forest for Patient Shock Detection

  • Minsu Jeong;Namhwa Lee;Byuk Sung Ko;Inwhee Joe
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권4호
    • /
    • pp.1080-1099
    • /
    • 2023
  • Digital healthcare combined with telemedicine services in the form of convergence with digital technology and AI is developing rapidly. Digital healthcare research is being conducted on many conditions including shock. However, the causes of shock are diverse, and the treatment is very complicated, requiring a high level of medical knowledge. In this paper, we propose a shock detection method based on the correlation between shock and data extracted from hemodynamic monitoring equipment. From the various parameters expressed by this equipment, four parameters closely related to patient shock were used as the input data for a machine learning model in order to detect the shock. Using the four parameters as input data, that is, feature values, a random forest-based ensemble machine learning model was constructed. The value of the mean arterial pressure was used as the correct answer value, the so called label value, to detect the patient's shock state. The performance was then compared with the decision tree and logistic regression model using a confusion matrix. The average accuracy of the random forest model was 92.80%, which shows superior performance compared to other models. We look forward to our work playing a role in helping medical staff by making recommendations for the diagnosis and treatment of complex and difficult cases of shock.