• 제목/요약/키워드: Ensemble Techniques

검색결과 177건 처리시간 0.024초

기상예보를 고려한 ESP 유출 확률 산정 (Estimation of ESP Probability considering Weather Outlook)

  • 안정민;이상진;김정곤;김주철;맹승진;우동현
    • 한국물환경학회지
    • /
    • 제27권3호
    • /
    • pp.264-272
    • /
    • 2011
  • The objective of this study was to develop a model for predicting long-term runoff in a basin using the ensemble streamflow prediction (ESP) technique and review its reliability. To achieve the objective, this study improved not only the ESP technique based on the ensemble scenario analysis of historical rainfall data but also conventional ESP techniques used in conjunction with qualitative climate forecasting information, and analyzed and assessed their improvement effects. The model was applied to the Geum River basin. To undertake runoff forecasting, this study tried three cases (case 1: Climate Outlook + ESP, case 2: ESP probability through monthly measured discharge, case 3: Season ESP probability of case 2) according to techniques used to calculate ESP probabilities. As a result, the mean absolute error of runoff forecasts for case 1 proposed by this study was calculated as 295.8 MCM. This suggests that case 1 showed higher reliability in runoff forecasting than case 2 (324 MCM) and case 3 (473.1 MCM). In a discrepancy-ratio accuracy analysis, the Climate Outlook + ESP technique displayed 50.0%. This suggests that runoff forecasting using the Climate Outlook +ESP technique with the lowest absolute error was more reliable than other two cases.

XGboost 기반의 WiFi 신호를 이용한 실내 측위 기법 (Indoor positioning method using WiFi signal based on XGboost)

  • 황치곤;윤창표;김대진
    • 한국정보통신학회논문지
    • /
    • 제26권1호
    • /
    • pp.70-75
    • /
    • 2022
  • 위치를 정확하게 측정하는 것은 다양한 서비스를 제공하는 데 필요하다. 실내 측위를 위한 데이터는 스마트 폰의 앱을 통해 WiFi 장치로부터 RSSI 값을 측정한다. 이렇게 측정된 데이터는 기계학습의 원시 데이터가 된다. 특징 데이터는 측정된 RSSI 값이고, 레이블은 측정한 위치에 대한 공간의 이름으로 한다. 이를 위한 기계학습 기법은 분류에 효율적인 기법을 적용하여 WiFi 신호만으로 정확한 위치를 예측하는 기법을 연구하고자 한다. 앙상블은 하나의 모델보다 다양한 모델을 통하여 더 정확한 예측값을 구하는 기법으로, bagging과 boosting이 있다. 이 중 Boosting은 샘플링한 데이터를 바탕으로 모델링한 결과를 통해 모델의 가중치를 조정하는 기법으로, 다양한 알고리즘이 있다. 본 연구는 위 기법 중 XGboost를 이용하고, 다른 앙상블 기법과 이용한 수행결과를 바탕으로 성능을 평가한다.

IMPROVING THE ESP ACCURACY WITH COMBINATION OF PROBABILISTIC FORECASTS

  • Yu, Seung-Oh;Kim, Young-Oh
    • Water Engineering Research
    • /
    • 제5권2호
    • /
    • pp.101-109
    • /
    • 2004
  • Aggregating information by combining forecasts from two or more forecasting methods is an alternative to using forecasts from just a single method to improve forecast accuracy. This paper describes the development and use of a monthly inflow forecast model based on an optimal linear combination (OLC) of forecasts derived from naive, persistence, and Ensemble Streamflow Prediction (ESP) forecasts. Using the cross-validation technique, the OLC model made 1-month ahead probabilistic forecasts for the Chungju multi-purpose dam inflows for 15 years. For most of the verification months, the skill associated with the OLC forecast was superior to those drawn from the individual forecast techniques. Therefore this study demonstrates that OLC can improve the accuracy of the ESP forecast, especially during the dry season. This study also examined the value of the OLC forecasts in reservoir operations. Stochastic Dynamic Programming (SDP) derived the optimal operating policy for the Chungju multi-purpose dam operation and the derived policy was simulated using the 15-year observed inflows. The simulation results showed the SDP model that updated its probability from the new OLC forecast provided more efficient operation decisions than the conventional SDP model.

  • PDF

WLAN용 소형 광대역 H-모양 마이크로스트립 안테나 (Design of a Miniature Wideband H-shaped Microstrip Antenna for WLAN)

  • 이문수
    • 대한전자공학회논문지TC
    • /
    • 제41권3호
    • /
    • pp.173-173
    • /
    • 2004
  • 본 논문에서는 무선 근거리 지역 통신망(WLAN: Wireless Local Area Networks)용 광대역 2층 H-형 마이크로스트립 패치 안테나를 설계한다. 마이크로스트립 패치 안테나의 대역폭을 개선하기 위해서 기생패치를 부가하여 다층배열한다. 그리고 안테나의 크기를 줄이기 위해, 기본 방사소자와 기생패치는 10개의 단락봉으로 단락된 H-모양의 패치로 설계한다. 마이크로스트립 안테나는 모멘트법으로 작성된 ENSEMBLE ver 5.0의 소프트웨어를 사용하여 설계하고 실험치와 비교한다. 제작된 안테나의 대역폭은 5.46㎓에서 740㎒(13.5%)이며, 이것은 계산치 770㎒(13%)와 거의 근사하다. 또한 동일 주파수에서 동일 기판에 설계된 안테나 크기는 반파장 구형 마이크로스트립 패치 안테나에 비해 71.5%로 축소되었다.

Uncertainty quantification for structural health monitoring applications

  • Nasr, Dana E.;Slika, Wael G.;Saad, George A.
    • Smart Structures and Systems
    • /
    • 제22권4호
    • /
    • pp.399-411
    • /
    • 2018
  • The difficulty in modeling complex nonlinear structures lies in the presence of significant sources of uncertainties mainly attributed to sudden changes in the structure's behavior caused by regular aging factors or extreme events. Quantifying these uncertainties and accurately representing them within the complex mathematical framework of Structural Health Monitoring (SHM) are significantly essential for system identification and damage detection purposes. This study highlights the importance of uncertainty quantification in SHM frameworks, and presents a comparative analysis between intrusive and non-intrusive techniques in quantifying uncertainties for SHM purposes through two different variations of the Kalman Filter (KF) method, the Ensemble Kalman filter (EnKF) and the Polynomial Chaos Kalman Filter (PCKF). The comparative analysis is based on a numerical example that consists of a four degrees-of-freedom (DOF) system, comprising Bouc-Wen hysteretic behavior and subjected to El-Centro earthquake excitation. The comparison is based on the ability of each technique to quantify the different sources of uncertainty for SHM purposes and to accurately approximate the system state and parameters when compared to the true state with the least computational burden. While the results show that both filters are able to locate the damage in space and time and to accurately estimate the system responses and unknown parameters, the computational cost of PCKF is shown to be less than that of EnKF for a similar level of numerical accuracy.

선형변수 기계학습 기법을 활용한 저속비대선의 잉여저항계수 추정 (Prediction of Residual Resistance Coefficient of Low-Speed Full Ships Using Hull Form Variables and Machine Learning Approaches)

  • 김유철;양경규;김명수;이영연;김광수
    • 대한조선학회논문집
    • /
    • 제57권6호
    • /
    • pp.312-321
    • /
    • 2020
  • In this study, machine learning techniques were applied to predict the residual resistance coefficient (Cr) of low-speed full ships. The used machine learning methods are Ridge regression, support vector regression, random forest, neural network and their ensemble model. 19 hull form variables were used as input variables for machine learning methods. The hull form variables and Cr data obtained from 139 hull forms of KRISO database were used in analysis. 80 % of the total data were used as training models and the rest as validation. Some non-linear models showed the overfitted results and the ensemble model showed better results than others.

2차원 변환과 CNN 딥러닝 기반 음향 인식 시스템에 관한 연구 (A Study on Sound Recognition System Based on 2-D Transformation and CNN Deep Learning)

  • 하태민;조성원;;;이기성
    • 스마트미디어저널
    • /
    • 제11권1호
    • /
    • pp.31-37
    • /
    • 2022
  • 본 논문은 일상생활에서 흔히 들을 수 있는 소리(비명소리, 박수 소리, 여러 명의 박수 소리, 자동차 지나가는 소리, 배경음 등)를 감지하는 음향 인식을 위하여, 신호처리 및 딥러닝을 적용하는 연구에 관한 것이다. 제안된 음향 인식에서는, 인식 정확도의 향상을 위해서 음향 파형의 스펙트럼, 음향 데이터의 증강, 2차원(2-D) 이미지 변환에 관한 기술들이 사용되었고, 예측의 정확도를 향상을 위한 앙상블 학습, Convolution Neural Network(CNN) 딥러닝 기술들이 적용된다. 제안된 음향 인식 기술은 실험을 통해 다양한 음향을 정확하게 인식할 수 있음을 보여준다.

Feature Selection with Ensemble Learning for Prostate Cancer Prediction from Gene Expression

  • Abass, Yusuf Aleshinloye;Adeshina, Steve A.
    • International Journal of Computer Science & Network Security
    • /
    • 제21권12spc호
    • /
    • pp.526-538
    • /
    • 2021
  • Machine and deep learning-based models are emerging techniques that are being used to address prediction problems in biomedical data analysis. DNA sequence prediction is a critical problem that has attracted a great deal of attention in the biomedical domain. Machine and deep learning-based models have been shown to provide more accurate results when compared to conventional regression-based models. The prediction of the gene sequence that leads to cancerous diseases, such as prostate cancer, is crucial. Identifying the most important features in a gene sequence is a challenging task. Extracting the components of the gene sequence that can provide an insight into the types of mutation in the gene is of great importance as it will lead to effective drug design and the promotion of the new concept of personalised medicine. In this work, we extracted the exons in the prostate gene sequences that were used in the experiment. We built a Deep Neural Network (DNN) and Bi-directional Long-Short Term Memory (Bi-LSTM) model using a k-mer encoding for the DNA sequence and one-hot encoding for the class label. The models were evaluated using different classification metrics. Our experimental results show that DNN model prediction offers a training accuracy of 99 percent and validation accuracy of 96 percent. The bi-LSTM model also has a training accuracy of 95 percent and validation accuracy of 91 percent.

머신러닝을 이용한 이러닝 학습자 집중도 평가 연구 (A Study on Evaluation of e-learners' Concentration by using Machine Learning)

  • 정영상;주민성;조남욱
    • 디지털산업정보학회논문지
    • /
    • 제18권4호
    • /
    • pp.67-75
    • /
    • 2022
  • Recently, e-learning has been attracting significant attention due to COVID-19. However, while e-learning has many advantages, it has disadvantages as well. One of the main disadvantages of e-learning is that it is difficult for teachers to continuously and systematically monitor learners. Although services such as personalized e-learning are provided to compensate for the shortcoming, systematic monitoring of learners' concentration is insufficient. This study suggests a method to evaluate the learner's concentration by applying machine learning techniques. In this study, emotion and gaze data were extracted from 184 videos of 92 participants. First, the learners' concentration was labeled by experts. Then, statistical-based status indicators were preprocessed from the data. Random Forests (RF), Support Vector Machines (SVMs), Multilayer Perceptron (MLP), and an ensemble model have been used in the experiment. Long Short-Term Memory (LSTM) has also been used for comparison. As a result, it was possible to predict e-learners' concentration with an accuracy of 90.54%. This study is expected to improve learners' immersion by providing a customized educational curriculum according to the learner's concentration level.

Robust Sentiment Classification of Metaverse Services Using a Pre-trained Language Model with Soft Voting

  • Haein Lee;Hae Sun Jung;Seon Hong Lee;Jang Hyun Kim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권9호
    • /
    • pp.2334-2347
    • /
    • 2023
  • Metaverse services generate text data, data of ubiquitous computing, in real-time to analyze user emotions. Analysis of user emotions is an important task in metaverse services. This study aims to classify user sentiments using deep learning and pre-trained language models based on the transformer structure. Previous studies collected data from a single platform, whereas the current study incorporated the review data as "Metaverse" keyword from the YouTube and Google Play Store platforms for general utilization. As a result, the Bidirectional Encoder Representations from Transformers (BERT) and Robustly optimized BERT approach (RoBERTa) models using the soft voting mechanism achieved a highest accuracy of 88.57%. In addition, the area under the curve (AUC) score of the ensemble model comprising RoBERTa, BERT, and A Lite BERT (ALBERT) was 0.9458. The results demonstrate that the ensemble combined with the RoBERTa model exhibits good performance. Therefore, the RoBERTa model can be applied on platforms that provide metaverse services. The findings contribute to the advancement of natural language processing techniques in metaverse services, which are increasingly important in digital platforms and virtual environments. Overall, this study provides empirical evidence that sentiment analysis using deep learning and pre-trained language models is a promising approach to improving user experiences in metaverse services.