• Title/Summary/Keyword: Ensemble Support Vector Machine

Search Result 83, Processing Time 0.036 seconds

Dynamic Web Information Predictive System Using Ensemble Support Vector Machine (앙상블 SVM을 이용한 동적 웹 정보 예측 시스템)

  • Park, Chang-Hee;Yoon, Kyung-Bae
    • The KIPS Transactions:PartB
    • /
    • v.11B no.4
    • /
    • pp.465-470
    • /
    • 2004
  • Web Information Predictive Systems have the restriction such as they need users profiles and visible feedback information for obtaining the necessary information. For overcoming this restrict, this study designed and implemented Dynamic Web Information Predictive System using Ensemble Support Vector Machine to be able to predict the web information and provide the relevant information every user needs most by click stream data and user feedback information, which have some clues based on the data. The result of performance test using Dynamic Web Information Predictive System using Ensemble Support Vector Machine against the existing Web Information Predictive System has preyed that this study s method is an excellence solution.

Ensemble Forecasting of Summer Seasonal Streamflow Using Hydroclimatic Information (수문기상정보를 이용한 여름 유량의 Ensemble 예측)

  • Kwon, Hyun-Han;Moon, Young-Il
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1455-1459
    • /
    • 2006
  • 우리나라 수자원 관리에서 여름 유량은 이수 및 치수 측면에서 매우 중요한 역할을 한다. 이러한 점에서 여름유량의 예측 가능성을 검토하는 것은 수자원 관리에 유연성을 주는 동시에 상대적으로 위험도를 저감시킬 수 있는 역할을 할 수 있다. 따라서 본 연구의 목적은 여름 계절 유량을 대상으로 기상인자와의 상관성 분석을 통해 유량 예측을 위한 수문기상정보(hydroclimatics)를 전 지구적으로 검토하고 최종적으로 불확실성을 고려할 수 있는 Ensemble예측을 실시하고자 한다. Ensemble예측은 설정 가능한 입력 자료를 통하여 다수의 출력자료를 얻는 방법론으로서 불확실성이 큰 기상 및 수문기상자료 분석에 주로 이용되고 있다. 본 연구에서는 해수면온도(sea surface temperature), 해수면기압(sea level pressure)과 방출장파복사에너지(outgoing longwave radiation)를 주요 기상인자로 고려하였으며 예측모형으로서는 Cross Ensemble(out of bagging)방법에 근거한 Support Vector Machine 모형을 이용하였다. 분석결과 주요 기상인자와 50%이상의 상관관계를 보이고 있으며 다소 합리적인 예측 결과를 제시하여 주고 있어 수자원관리를 위한 보조수단으로 이용이 가능할 것으로 사료된다.

  • PDF

Dynamic Recommendation System of Web Information Using Ensemble Support Vector Machine and Hybrid SOM (앙상블 Support Vector Machine과 하이브리드 SOM을 이용한 동적 웹 정보 추천 시스템)

  • Yoon, Kyung-Bae;Choi, Jun-Hyeog
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.4
    • /
    • pp.433-438
    • /
    • 2003
  • Recently, some studies of a web-based information recommendation technique which provides users with the most necessary information through websites like a web-based shopping mall have been conducted vigorously. In most cases of web information recommendation techniques which rely on a user profile and a specific feedback from users, they require accurate and diverse profile information of users. However, in reality, it is quite difficult to acquire this related information. This paper is aimed to suggest an information prediction technique for a web information service without depending on the users'specific feedback and profile. To achieve this goal, this study is to design and implement a Dynamic Web Information Prediction System which can recommend the most useful and necessary information to users from a large volume of web data by designing and embodying Ensemble Support Vector Machine and hybrid SOM algorithm and eliminating the scarcity problem of web log data.

LS-SVM for large data sets

  • Park, Hongrak;Hwang, Hyungtae;Kim, Byungju
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.2
    • /
    • pp.549-557
    • /
    • 2016
  • In this paper we propose multiclassification method for large data sets by ensembling least squares support vector machines (LS-SVM) with principal components instead of raw input vector. We use the revised one-vs-all method for multiclassification, which is one of voting scheme based on combining several binary classifications. The revised one-vs-all method is performed by using the hat matrix of LS-SVM ensemble, which is obtained by ensembling LS-SVMs trained using each random sample from the whole large training data. The leave-one-out cross validation (CV) function is used for the optimal values of hyper-parameters which affect the performance of multiclass LS-SVM ensemble. We present the generalized cross validation function to reduce computational burden of leave-one-out CV functions. Experimental results from real data sets are then obtained to illustrate the performance of the proposed multiclass LS-SVM ensemble.

Parameter Tuning in Support Vector Regression for Large Scale Problems (대용량 자료에 대한 서포트 벡터 회귀에서 모수조절)

  • Ryu, Jee-Youl;Kwak, Minjung;Yoon, Min
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.1
    • /
    • pp.15-21
    • /
    • 2015
  • In support vector machine, the values of parameters included in kernels affect strongly generalization ability. It is often difficult to determine appropriate values of those parameters in advance. It has been observed through our studies that the burden for deciding the values of those parameters in support vector regression can be reduced by utilizing ensemble learning. However, the straightforward application of the method to large scale problems is too time consuming. In this paper, we propose a method in which the original data set is decomposed into a certain number of sub data set in order to reduce the burden for parameter tuning in support vector regression with large scale data sets and imbalanced data set, particularly.

Multiclass LS-SVM ensemble for large data

  • Hwang, Hyungtae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.6
    • /
    • pp.1557-1563
    • /
    • 2015
  • Multiclass classification is typically performed using the voting scheme method based on combining binary classifications. In this paper we propose multiclass classification method for large data, which can be regarded as the revised one-vs-all method. The multiclass classification is performed by using the hat matrix of least squares support vector machine (LS-SVM) ensemble, which is obtained by aggregating individual LS-SVM trained on each subset of whole large data. The cross validation function is defined to select the optimal values of hyperparameters which affect the performance of multiclass LS-SVM proposed. We obtain the generalized cross validation function to reduce computational burden of cross validation function. Experimental results are then presented which indicate the performance of the proposed method.

Anomaly-Based Network Intrusion Detection: An Approach Using Ensemble-Based Machine Learning Algorithm

  • Kashif Gul Chachar;Syed Nadeem Ahsan
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.1
    • /
    • pp.107-118
    • /
    • 2024
  • With the seamless growth of the technology, network usage requirements are expanding day by day. The majority of electronic devices are capable of communication, which strongly requires a secure and reliable network. Network-based intrusion detection systems (NIDS) is a new method for preventing and alerting computers and networks from attacks. Machine Learning is an emerging field that provides a variety of ways to implement effective network intrusion detection systems (NIDS). Bagging and Boosting are two ensemble ML techniques, renowned for better performance in the learning and classification process. In this paper, the study provides a detailed literature review of the past work done and proposed a novel ensemble approach to develop a NIDS system based on the voting method using bagging and boosting ensemble techniques. The test results demonstrate that the ensemble of bagging and boosting through voting exhibits the highest classification accuracy of 99.98% and a minimum false positive rate (FPR) on both datasets. Although the model building time is average which can be a tradeoff by processor speed.

Asymmetric Semi-Supervised Boosting Scheme for Interactive Image Retrieval

  • Wu, Jun;Lu, Ming-Yu
    • ETRI Journal
    • /
    • v.32 no.5
    • /
    • pp.766-773
    • /
    • 2010
  • Support vector machine (SVM) active learning plays a key role in the interactive content-based image retrieval (CBIR) community. However, the regular SVM active learning is challenged by what we call "the small example problem" and "the asymmetric distribution problem." This paper attempts to integrate the merits of semi-supervised learning, ensemble learning, and active learning into the interactive CBIR. Concretely, unlabeled images are exploited to facilitate boosting by helping augment the diversity among base SVM classifiers, and then the learned ensemble model is used to identify the most informative images for active learning. In particular, a bias-weighting mechanism is developed to guide the ensemble model to pay more attention on positive images than negative images. Experiments on 5000 Corel images show that the proposed method yields better retrieval performance by an amount of 0.16 in mean average precision compared to regular SVM active learning, which is more effective than some existing improved variants of SVM active learning.

Bankruptcy prediction using ensemble SVM model (앙상블 SVM 모형을 이용한 기업 부도 예측)

  • Choi, Ha Na;Lim, Dong Hoon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.6
    • /
    • pp.1113-1125
    • /
    • 2013
  • Corporate bankruptcy prediction has been an important topic in the accounting and finance field for a long time. Several data mining techniques have been used for bankruptcy prediction. However, there are many limits for application to real classification problem with a single model. This study proposes ensemble SVM (support vector machine) model which assembles different SVM models with each different kernel functions. Our ensemble model is made and evaluated by v-fold cross-validation approach. The k top performing models are recruited into the ensemble. The classification is then carried out using the majority voting opinion of the ensemble. In this paper, we investigate the performance of ensemble SVM classifier in terms of accuracy, error rate, sensitivity, specificity, ROC curve, and AUC to compare with single SVM classifiers based on financial ratios dataset and simulation dataset. The results confirmed the advantages of our method: It is robust while providing good performance.

A Study on Comparison of Lung Cancer Prediction Using Ensemble Machine Learning

  • NAM, Yu-Jin;SHIN, Won-Ji
    • Korean Journal of Artificial Intelligence
    • /
    • v.7 no.2
    • /
    • pp.19-24
    • /
    • 2019
  • Lung cancer is a chronic disease which ranks fourth in cancer incidence with 11 percent of the total cancer incidence in Korea. To deal with such issues, there is an active study on the usefulness and utilization of the Clinical Decision Support System (CDSS) which utilizes machine learning. Thus, this study reviews existing studies on artificial intelligence technology that can be used in determining the lung cancer, and conducted a study on the applicability of machine learning in determination of the lung cancer by comparison and analysis using Azure ML provided by Microsoft. The results of this study show different predictions yielded by three algorithms: Support Vector Machine (SVM), Two-Class Support Decision Jungle and Multiclass Decision Jungle. This study has its limitations in the size of the Big data used in Machine Learning. Although the data provided by Kaggle is the most suitable one for this study, it is assumed that there is a limit in learning the data fully due to the lack of absolute figures. Therefore, it is claimed that if the agency's cooperation in the subsequent research is used to compare and analyze various kinds of algorithms other than those used in this study, a more accurate screening machine for lung cancer could be created.