• Title/Summary/Keyword: Ensemble Machine Learning Models

Search Result 138, Processing Time 0.021 seconds

Optimizing E-Commerce with Ensemble Learning and Iterative Clustering for Superior Product Selection

  • Yuchen Liu;Meng Wang;Gangmin Li;Terry R. Payne;Yong Yue;Ka Lok Man
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.10
    • /
    • pp.2818-2839
    • /
    • 2024
  • With the continuous growth of e-commerce sales, a robust product selection model is essential to maintain competitiveness and meet consumer demand. Current research primarily focuses on single models for sales prediction and lacks an integrated approach to sales forecasting and product selection. This paper proposes a comprehensive framework (VN-CPC) that combines sales forecasting with product selection to address these issues. We integrate a series of classical machine learning models, including Tree Models (XGBoost, LightGBM, CatBoost), Support Vector Machine (SVM), Bayesian Ridge, and Artificial Neural Networks (ANN), using a voting mechanism to determine the optimal weighting scheme. Our method demonstrates a lower Root Mean Square Error (RMSE) on collected Amazon data than individual models and other ensemble models. Furthermore, we employ a three-tiered clustering model: Initial Clustering, Refinement Clustering, and Final Clustering, based on our predictive model to refine product selection to specific categories. This integrated forecasting and selection framework can be more effectively applied in the dynamic e-commerce environment. It provides a robust tool for businesses to optimize their product offerings and stay ahead in a competitive market.

Prediction of English Premier League Game Using an Ensemble Technique (앙상블 기법을 통한 잉글리시 프리미어리그 경기결과 예측)

  • Yi, Jae Hyun;Lee, Soo Won
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.5
    • /
    • pp.161-168
    • /
    • 2020
  • Predicting outcome of the sports enables teams to establish their strategy by analyzing variables that affect overall game flow and wins and losses. Many studies have been conducted on the prediction of the outcome of sports events through statistical techniques and machine learning techniques. Predictive performance is the most important in a game prediction model. However, statistical and machine learning models show different optimal performance depending on the characteristics of the data used for learning. In this paper, we propose a new ensemble model to predict English Premier League soccer games using statistical models and the machine learning models which showed good performance in predicting the results of the soccer games and this model is possible to select a model that performs best when predicting the data even if the data are different. The proposed ensemble model predicts game results by learning the final prediction model with the game prediction results of each single model and the actual game results. Experimental results for the proposed model show higher performance than the single models.

Ensemble Design of Machine Learning Technigues: Experimental Verification by Prediction of Drifter Trajectory (앙상블을 이용한 기계학습 기법의 설계: 뜰개 이동경로 예측을 통한 실험적 검증)

  • Lee, Chan-Jae;Kim, Yong-Hyuk
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.3
    • /
    • pp.57-67
    • /
    • 2018
  • The ensemble is a unified approach used for getting better performance by using multiple algorithms in machine learning. In this paper, we introduce boosting and bagging, which have been widely used in ensemble techniques, and design a method using support vector regression, radial basis function network, Gaussian process, and multilayer perceptron. In addition, our experiment was performed by adding a recurrent neural network and MOHID numerical model. The drifter data used for our experimental verification consist of 683 observations in seven regions. The performance of our ensemble technique is verified by comparison with four algorithms each. As verification, mean absolute error was adapted. The presented methods are based on ensemble models using bagging, boosting, and machine learning. The error rate was calculated by assigning the equal weight value and different weight value to each unit model in ensemble. The ensemble model using machine learning showed 61.7% improvement compared to the average of four machine learning technique.

Comparative characteristic of ensemble machine learning and deep learning models for turbidity prediction in a river (딥러닝과 앙상블 머신러닝 모형의 하천 탁도 예측 특성 비교 연구)

  • Park, Jungsu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.1
    • /
    • pp.83-91
    • /
    • 2021
  • The increased turbidity in rivers during flood events has various effects on water environmental management, including drinking water supply systems. Thus, prediction of turbid water is essential for water environmental management. Recently, various advanced machine learning algorithms have been increasingly used in water environmental management. Ensemble machine learning algorithms such as random forest (RF) and gradient boosting decision tree (GBDT) are some of the most popular machine learning algorithms used for water environmental management, along with deep learning algorithms such as recurrent neural networks. In this study GBDT, an ensemble machine learning algorithm, and gated recurrent unit (GRU), a recurrent neural networks algorithm, are used for model development to predict turbidity in a river. The observation frequencies of input data used for the model were 2, 4, 8, 24, 48, 120 and 168 h. The root-mean-square error-observations standard deviation ratio (RSR) of GRU and GBDT ranges between 0.182~0.766 and 0.400~0.683, respectively. Both models show similar prediction accuracy with RSR of 0.682 for GRU and 0.683 for GBDT. The GRU shows better prediction accuracy when the observation frequency is relatively short (i.e., 2, 4, and 8 h) where GBDT shows better prediction accuracy when the observation frequency is relatively long (i.e. 48, 120, 160 h). The results suggest that the characteristics of input data should be considered to develop an appropriate model to predict turbidity.

Local quantile ensemble for machine learning methods

  • Suin Kim;Yoonsuh Jung
    • Communications for Statistical Applications and Methods
    • /
    • v.31 no.6
    • /
    • pp.627-644
    • /
    • 2024
  • Quantile regression models have become popular due to their benefits in obtaining robust estimates. Some machine learning (ML) models can estimate conditional quantiles. However, current ML methods mainly focus on just adapting quantile regression. In this paper, we propose a local quantile ensemble based on ML methods, which averages multiple estimated quantiles near the target quantile. It is designed to enhance the stability and accuracy of the quantile fits. This approach extends the composite quantile regression algorithm that typically considers the central tendency under a linear model. The proposed methods can be applied to various types of data having nonlinear and heterogeneous trend. We provide an empirical rule for choosing quantiles around the target quantile. The bias-variance tradeoff inherent in this method offers performance benefits. Through empirical studies using Monte Carlo simulations and real data sets, we demonstrate that the proposed method can significantly improve quantile estimation accuracy and stabilize the quantile fits.

A Study on the Insider Behavior Analysis Framework for Detecting Information Leakage Using Network Traffic Collection and Restoration (네트워크 트래픽 수집 및 복원을 통한 내부자 행위 분석 프레임워크 연구)

  • Kauh, Janghyuk;Lee, Dongho
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.13 no.4
    • /
    • pp.125-139
    • /
    • 2017
  • In this paper, we developed a framework to detect and predict insider information leakage by collecting and restoring network traffic. For automated behavior analysis, many meta information and behavior information obtained using network traffic collection are used as machine learning features. By these features, we created and learned behavior model, network model and protocol-specific models. In addition, the ensemble model was developed by digitizing and summing the results of various models. We developed a function to present information leakage candidates and view meta information and behavior information from various perspectives using the visual analysis. This supports to rule-based threat detection and machine learning based threat detection. In the future, we plan to make an ensemble model that applies a regression model to the results of the models, and plan to develop a model with deep learning technology.

Simulation for Power Efficiency Optimization of Air Compressor Using Machine Learning Ensemble (머신러닝 앙상블을 활용한 공압기의 전력 효율 최적화 시뮬레이션 )

  • Juhyeon Kim;Moonsoo Jang;Jieun Choi;Yoseob Heo;Hyunsang Chung;Soyoung Park
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_3
    • /
    • pp.1205-1213
    • /
    • 2023
  • This study delves into methods for enhancing the power efficiency of air compressor systems, with the primary objective of significantly impacting industrial energy consumption and environmental preservation. The paper scrutinizes Shinhan Airro Co., Ltd.'s power efficiency optimization technology and employs machine learning ensemble models to simulate power efficiency optimization. The results indicate that Shinhan Airro's optimization system led to a notable 23.5% increase in power efficiency. Nonetheless, the study's simulations, utilizing machine learning ensemble techniques, reveal the potential for a further 51.3% increase in power efficiency. By continually exploring and advancing these methodologies, this research introduces a practical approach for identifying optimization points through data-driven simulations using machine learning ensembles.

Rockfall Source Identification Using a Hybrid Gaussian Mixture-Ensemble Machine Learning Model and LiDAR Data

  • Fanos, Ali Mutar;Pradhan, Biswajeet;Mansor, Shattri;Yusoff, Zainuddin Md;Abdullah, Ahmad Fikri bin;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.1
    • /
    • pp.93-115
    • /
    • 2019
  • The availability of high-resolution laser scanning data and advanced machine learning algorithms has enabled an accurate potential rockfall source identification. However, the presence of other mass movements, such as landslides within the same region of interest, poses additional challenges to this task. Thus, this research presents a method based on an integration of Gaussian mixture model (GMM) and ensemble artificial neural network (bagging ANN [BANN]) for automatic detection of potential rockfall sources at Kinta Valley area, Malaysia. The GMM was utilised to determine slope angle thresholds of various geomorphological units. Different algorithms(ANN, support vector machine [SVM] and k nearest neighbour [kNN]) were individually tested with various ensemble models (bagging, voting and boosting). Grid search method was adopted to optimise the hyperparameters of the investigated base models. The proposed model achieves excellent results with success and prediction accuracies at 95% and 94%, respectively. In addition, this technique has achieved excellent accuracies (ROC = 95%) over other methods used. Moreover, the proposed model has achieved the optimal prediction accuracies (92%) on the basis of testing data, thereby indicating that the model can be generalised and replicated in different regions, and the proposed method can be applied to various landslide studies.

Estimation of lightweight aggregate concrete characteristics using a novel stacking ensemble approach

  • Kaloop, Mosbeh R.;Bardhan, Abidhan;Hu, Jong Wan;Abd-Elrahman, Mohamed
    • Advances in nano research
    • /
    • v.13 no.5
    • /
    • pp.499-512
    • /
    • 2022
  • This study investigates the efficiency of ensemble machine learning for predicting the lightweight-aggregate concrete (LWC) characteristics. A stacking ensemble (STEN) approach was proposed to estimate the dry density (DD) and 28 days compressive strength (Fc-28) of LWC using two meta-models called random forest regressor (RFR) and extra tree regressor (ETR), and two novel ensemble models called STEN-RFR and STEN-ETR, were constructed. Four standalone machine learning models including artificial neural network, gradient boosting regression, K neighbor regression, and support vector regression were used to compare the performance of the proposed models. For this purpose, a sum of 140 LWC mixtures with 21 influencing parameters for producing LWC with a density less than 1000 kg/m3, were used. Based on the experimental results with multiple performance criteria, it can be concluded that the proposed STEN-ETR model can be used to estimate the DD and Fc-28 of LWC. Moreover, the STEN-ETR approach was found to be a significant technique in prediction DD and Fc-28 of LWC with minimal prediction error. In the validation phase, the accuracy of the proposed STEN-ETR model in predicting DD and Fc-28 was found to be 96.79% and 81.50%, respectively. In addition, the significance of cement, water-cement ratio, silica fume, and aggregate with expanded glass variables is efficient in modeling DD and Fc-28 of LWC.

The Effect of Input Variables Clustering on the Characteristics of Ensemble Machine Learning Model for Water Quality Prediction (입력자료 군집화에 따른 앙상블 머신러닝 모형의 수질예측 특성 연구)

  • Park, Jungsu
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.5
    • /
    • pp.335-343
    • /
    • 2021
  • Water quality prediction is essential for the proper management of water supply systems. Increased suspended sediment concentration (SSC) has various effects on water supply systems such as increased treatment cost and consequently, there have been various efforts to develop a model for predicting SSC. However, SSC is affected by both the natural and anthropogenic environment, making it challenging to predict SSC. Recently, advanced machine learning models have increasingly been used for water quality prediction. This study developed an ensemble machine learning model to predict SSC using the XGBoost (XGB) algorithm. The observed discharge (Q) and SSC in two fields monitoring stations were used to develop the model. The input variables were clustered in two groups with low and high ranges of Q using the k-means clustering algorithm. Then each group of data was separately used to optimize XGB (Model 1). The model performance was compared with that of the XGB model using the entire data (Model 2). The models were evaluated by mean squared error-ob servation standard deviation ratio (RSR) and root mean squared error. The RSR were 0.51 and 0.57 in the two monitoring stations for Model 2, respectively, while the model performance improved to RSR 0.46 and 0.55, respectively, for Model 1.