• 제목/요약/키워드: Ensemble Machine Learning

검색결과 235건 처리시간 0.022초

On successive machine learning process for predicting strength and displacement of rectangular reinforced concrete columns subjected to cyclic loading

  • Bu-seog Ju;Shinyoung Kwag;Sangwoo Lee
    • Computers and Concrete
    • /
    • 제32권5호
    • /
    • pp.513-525
    • /
    • 2023
  • Recently, research on predicting the behavior of reinforced concrete (RC) columns using machine learning methods has been actively conducted. However, most studies have focused on predicting the ultimate strength of RC columns using a regression algorithm. Therefore, this study develops a successive machine learning process for predicting multiple nonlinear behaviors of rectangular RC columns. This process consists of three stages: single machine learning, bagging ensemble, and stacking ensemble. In the case of strength prediction, sufficient prediction accuracy is confirmed even in the first stage. In the case of displacement, although sufficient accuracy is not achieved in the first and second stages, the stacking ensemble model in the third stage performs better than the machine learning models in the first and second stages. In addition, the performance of the final prediction models is verified by comparing the backbone curves and hysteresis loops obtained from predicted outputs with actual experimental data.

투자와 수출 및 환율의 고용에 대한 의사결정 나무, 랜덤 포레스트와 그래디언트 부스팅 머신러닝 모형 예측 (Investment, Export, and Exchange Rate on Prediction of Employment with Decision Tree, Random Forest, and Gradient Boosting Machine Learning Models)

  • 이재득
    • 무역학회지
    • /
    • 제46권2호
    • /
    • pp.281-299
    • /
    • 2021
  • This paper analyzes the feasibility of using machine learning methods to forecast the employment. The machine learning methods, such as decision tree, artificial neural network, and ensemble models such as random forest and gradient boosting regression tree were used to forecast the employment in Busan regional economy. The following were the main findings of the comparison of their predictive abilities. First, the forecasting power of machine learning methods can predict the employment well. Second, the forecasting values for the employment by decision tree models appeared somewhat differently according to the depth of decision trees. Third, the predictive power of artificial neural network model, however, does not show the high predictive power. Fourth, the ensemble models such as random forest and gradient boosting regression tree model show the higher predictive power. Thus, since the machine learning method can accurately predict the employment, we need to improve the accuracy of forecasting employment with the use of machine learning methods.

앙상블을 이용한 기계학습 기법의 설계: 뜰개 이동경로 예측을 통한 실험적 검증 (Ensemble Design of Machine Learning Technigues: Experimental Verification by Prediction of Drifter Trajectory)

  • 이찬재;김용혁
    • 예술인문사회 융합 멀티미디어 논문지
    • /
    • 제8권3호
    • /
    • pp.57-67
    • /
    • 2018
  • 앙상블 기법은 기계학습에서 다수의 알고리즘을 사용하여 더 좋은 성능을 내기 위해 사용하는 방법이다. 본 논문에서는 앙상블 기법에서 많이 사용되는 부스팅과 배깅에 대해 소개를 하고, 서포트벡터 회귀, 방사기저함수 네트워크, 가우시안 프로세스, 다층 퍼셉트론을 이용하여 설계한다. 추가적으로 순환신경망과 MOHID 수치모델을 추가하여 실험을 진행한다. 실험적 검증를 위해 사용하는 뜰개 데이터는 7 개의 지역에서 관측된 683 개의 관측 자료다. 뜰개 관측 자료를 이용하여 6 개의 알고리즘과의 비교를 통해 앙상블 기법의 성능을 검증한다. 검증 방법으로는 평균절대오차를 사용한다. 실험 방법은 배깅, 부스팅, 기계학습을 이용한 앙상블 모델을 이용하여 진행한다. 각 앙상블 모델마다 동일한 가중치를 부여한 방법, 차등한 가중치를 부여한 방법을 이용하여 오류율을 계산한다. 가장 좋은 오류율을 나타낸 방법은 기계학습을 이용한 앙상블 모델로서 6 개의 기계학습의 평균에 비해 61.7%가 개선된 결과를 보였다.

Improved ensemble machine learning framework for seismic fragility analysis of concrete shear wall system

  • Sangwoo Lee;Shinyoung Kwag;Bu-seog Ju
    • Computers and Concrete
    • /
    • 제32권3호
    • /
    • pp.313-326
    • /
    • 2023
  • The seismic safety of the shear wall structure can be assessed through seismic fragility analysis, which requires high computational costs in estimating seismic demands. Accordingly, machine learning methods have been applied to such fragility analyses in recent years to reduce the numerical analysis cost, but it still remains a challenging task. Therefore, this study uses the ensemble machine learning method to present an improved framework for developing a more accurate seismic demand model than the existing ones. To this end, a rank-based selection method that enables determining an excellent model among several single machine learning models is presented. In addition, an index that can evaluate the degree of overfitting/underfitting of each model for the selection of an excellent single model is suggested. Furthermore, based on the selected single machine learning model, we propose a method to derive a more accurate ensemble model based on the bagging method. As a result, the seismic demand model for which the proposed framework is applied shows about 3-17% better prediction performance than the existing single machine learning models. Finally, the seismic fragility obtained from the proposed framework shows better accuracy than the existing fragility methods.

앙상블 기법을 활용한 RNA-Sequencing 데이터의 폐암 예측 연구 (A Study on Predicting Lung Cancer Using RNA-Sequencing Data with Ensemble Learning)

  • Geon AN;JooYong PARK
    • Journal of Korea Artificial Intelligence Association
    • /
    • 제2권1호
    • /
    • pp.7-14
    • /
    • 2024
  • In this paper, we explore the application of RNA-sequencing data and ensemble machine learning to predict lung cancer and treatment strategies for lung cancer, a leading cause of cancer mortality worldwide. The research utilizes Random Forest, XGBoost, and LightGBM models to analyze gene expression profiles from extensive datasets, aiming to enhance predictive accuracy for lung cancer prognosis. The methodology focuses on preprocessing RNA-seq data to standardize expression levels across samples and applying ensemble algorithms to maximize prediction stability and reduce model overfitting. Key findings indicate that ensemble models, especially XGBoost, substantially outperform traditional predictive models. Significant genetic markers such as ADGRF5 is identified as crucial for predicting lung cancer outcomes. In conclusion, ensemble learning using RNA-seq data proves highly effective in predicting lung cancer, suggesting a potential shift towards more precise and personalized treatment approaches. The results advocate for further integration of molecular and clinical data to refine diagnostic models and improve clinical outcomes, underscoring the critical role of advanced molecular diagnostics in enhancing patient survival rates and quality of life. This study lays the groundwork for future research in the application of RNA-sequencing data and ensemble machine learning techniques in clinical settings.

Anomaly-Based Network Intrusion Detection: An Approach Using Ensemble-Based Machine Learning Algorithm

  • Kashif Gul Chachar;Syed Nadeem Ahsan
    • International Journal of Computer Science & Network Security
    • /
    • 제24권1호
    • /
    • pp.107-118
    • /
    • 2024
  • With the seamless growth of the technology, network usage requirements are expanding day by day. The majority of electronic devices are capable of communication, which strongly requires a secure and reliable network. Network-based intrusion detection systems (NIDS) is a new method for preventing and alerting computers and networks from attacks. Machine Learning is an emerging field that provides a variety of ways to implement effective network intrusion detection systems (NIDS). Bagging and Boosting are two ensemble ML techniques, renowned for better performance in the learning and classification process. In this paper, the study provides a detailed literature review of the past work done and proposed a novel ensemble approach to develop a NIDS system based on the voting method using bagging and boosting ensemble techniques. The test results demonstrate that the ensemble of bagging and boosting through voting exhibits the highest classification accuracy of 99.98% and a minimum false positive rate (FPR) on both datasets. Although the model building time is average which can be a tradeoff by processor speed.

다중 스태킹을 가진 새로운 앙상블 학습 기법 (A New Ensemble Machine Learning Technique with Multiple Stacking)

  • 이수은;김한준
    • 한국전자거래학회지
    • /
    • 제25권3호
    • /
    • pp.1-13
    • /
    • 2020
  • 기계학습(machine learning)이란 주어진 데이터에 대한 일반화 과정으로부터 특정 문제를 해결할 수 있는 모델(model) 생성 기술을 의미한다. 우수한 성능의 모델을 생성하기 위해서는 양질의 학습데이터와 일반화 과정을 위한 학습 알고리즘이 준비되어야 한다. 성능 개선을 위한 한 가지 방법으로서 앙상블(Ensemble) 기법은 단일 모델(single model)을 생성하기보다 다중 모델을 생성하며, 이는 배깅(Bagging), 부스팅(Boosting), 스태킹(Stacking) 학습 기법을 포함한다. 본 논문은 기존 스태킹 기법을 개선한 다중 스태킹 앙상블(Multiple Stacking Ensemble) 학습 기법을 제안한다. 다중 스태킹 앙상블 기법의 학습 구조는 딥러닝 구조와 유사하고 각 레이어가 스태킹 모델의 조합으로 구성되며 계층의 수를 증가시켜 각 계층의 오분류율을 최소화하여 성능을 개선한다. 4가지 유형의 데이터셋을 이용한 실험을 통해 제안 기법이 기존 기법에 비해 분류 성능이 우수함을 보인다.

머신러닝을 활용한 모돈의 생산성 예측모델 (Forecasting Sow's Productivity using the Machine Learning Models)

  • 이민수;최영찬
    • 농촌지도와개발
    • /
    • 제16권4호
    • /
    • pp.939-965
    • /
    • 2009
  • The Machine Learning has been identified as a promising approach to knowledge-based system development. This study aims to examine the ability of machine learning techniques for farmer's decision making and to develop the reference model for using pig farm data. We compared five machine learning techniques: logistic regression, decision tree, artificial neural network, k-nearest neighbor, and ensemble. All models are well performed to predict the sow's productivity in all parity, showing over 87.6% predictability. The model predictability of total litter size are highest at 91.3% in third parity and decreasing as parity increases. The ensemble is well performed to predict the sow's productivity. The neural network and logistic regression is excellent classifier for all parity. The decision tree and the k-nearest neighbor was not good classifier for all parity. Performance of models varies over models used, showing up to 104% difference in lift values. Artificial Neural network and ensemble models have resulted in highest lift values implying best performance among models.

  • PDF

SHM data anomaly classification using machine learning strategies: A comparative study

  • Chou, Jau-Yu;Fu, Yuguang;Huang, Shieh-Kung;Chang, Chia-Ming
    • Smart Structures and Systems
    • /
    • 제29권1호
    • /
    • pp.77-91
    • /
    • 2022
  • Various monitoring systems have been implemented in civil infrastructure to ensure structural safety and integrity. In long-term monitoring, these systems generate a large amount of data, where anomalies are not unusual and can pose unique challenges for structural health monitoring applications, such as system identification and damage detection. Therefore, developing efficient techniques is quite essential to recognize the anomalies in monitoring data. In this study, several machine learning techniques are explored and implemented to detect and classify various types of data anomalies. A field dataset, which consists of one month long acceleration data obtained from a long-span cable-stayed bridge in China, is employed to examine the machine learning techniques for automated data anomaly detection. These techniques include the statistic-based pattern recognition network, spectrogram-based convolutional neural network, image-based time history convolutional neural network, image-based time-frequency hybrid convolution neural network (GoogLeNet), and proposed ensemble neural network model. The ensemble model deliberately combines different machine learning models to enhance anomaly classification performance. The results show that all these techniques can successfully detect and classify six types of data anomalies (i.e., missing, minor, outlier, square, trend, drift). Moreover, both image-based time history convolutional neural network and GoogLeNet are further investigated for the capability of autonomous online anomaly classification and found to effectively classify anomalies with decent performance. As seen in comparison with accuracy, the proposed ensemble neural network model outperforms the other three machine learning techniques. This study also evaluates the proposed ensemble neural network model to a blind test dataset. As found in the results, this ensemble model is effective for data anomaly detection and applicable for the signal characteristics changing over time.

머신러닝 앙상블을 활용한 공압기의 전력 효율 최적화 시뮬레이션 (Simulation for Power Efficiency Optimization of Air Compressor Using Machine Learning Ensemble)

  • 김주헌;장문수;최지은;허요섭;정현상;박소영
    • 한국산업융합학회 논문집
    • /
    • 제26권6_3호
    • /
    • pp.1205-1213
    • /
    • 2023
  • This study delves into methods for enhancing the power efficiency of air compressor systems, with the primary objective of significantly impacting industrial energy consumption and environmental preservation. The paper scrutinizes Shinhan Airro Co., Ltd.'s power efficiency optimization technology and employs machine learning ensemble models to simulate power efficiency optimization. The results indicate that Shinhan Airro's optimization system led to a notable 23.5% increase in power efficiency. Nonetheless, the study's simulations, utilizing machine learning ensemble techniques, reveal the potential for a further 51.3% increase in power efficiency. By continually exploring and advancing these methodologies, this research introduces a practical approach for identifying optimization points through data-driven simulations using machine learning ensembles.