• Title/Summary/Keyword: Ensemble Learning

Search Result 385, Processing Time 0.033 seconds

Place Recognition Using Ensemble Learning of Mobile Multimodal Sensory Information (모바일 멀티모달 센서 정보의 앙상블 학습을 이용한 장소 인식)

  • Lee, Chung-Yeon;Lee, Beom-Jin;On, Kyoung-Woon;Ha, Jung-Woo;Kim, Hong-Il;Zhang, Byoung-Tak
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.1
    • /
    • pp.64-69
    • /
    • 2015
  • Place awareness is an essential for location-based services that are widely provided to smartphone users. However, traditional GPS-based methods are only valid outdoors where the GPS signal is strong and also require symbolic place information of the physical location. In this paper, environmental sounds and images are used to recognize important aspects of each place. The proposed method extracts feature vectors from visual, auditory and location data recorded by a smartphone with built-in camera, microphone and GPS sensors modules. The heterogeneous feature vectors were then learned by an ensemble learning method that learns each group of feature vectors for each classifier respectively and votes to produce the highest weighted result. The proposed method is evaluated for place recognition using a data group of 3000 samples in six places and the experimental results show a remarkably improved recognition accuracy when using all kinds of sensory data comparing to results using data from a single sensor or audio-visual integrated data only.

A Comparative Analysis of Ensemble Learning-Based Classification Models for Explainable Term Deposit Subscription Forecasting (설명 가능한 정기예금 가입 여부 예측을 위한 앙상블 학습 기반 분류 모델들의 비교 분석)

  • Shin, Zian;Moon, Jihoon;Rho, Seungmin
    • The Journal of Society for e-Business Studies
    • /
    • v.26 no.3
    • /
    • pp.97-117
    • /
    • 2021
  • Predicting term deposit subscriptions is one of representative financial marketing in banks, and banks can build a prediction model using various customer information. In order to improve the classification accuracy for term deposit subscriptions, many studies have been conducted based on machine learning techniques. However, even if these models can achieve satisfactory performance, utilizing them is not an easy task in the industry when their decision-making process is not adequately explained. To address this issue, this paper proposes an explainable scheme for term deposit subscription forecasting. For this, we first construct several classification models using decision tree-based ensemble learning methods, which yield excellent performance in tabular data, such as random forest, gradient boosting machine (GBM), extreme gradient boosting (XGB), and light gradient boosting machine (LightGBM). We then analyze their classification performance in depth through 10-fold cross-validation. After that, we provide the rationale for interpreting the influence of customer information and the decision-making process by applying Shapley additive explanation (SHAP), an explainable artificial intelligence technique, to the best classification model. To verify the practicality and validity of our scheme, experiments were conducted with the bank marketing dataset provided by Kaggle; we applied the SHAP to the GBM and LightGBM models, respectively, according to different dataset configurations and then performed their analysis and visualization for explainable term deposit subscriptions.

Evaluation of a Thermal Conductivity Prediction Model for Compacted Clay Based on a Machine Learning Method (기계학습법을 통한 압축 벤토나이트의 열전도도 추정 모델 평가)

  • Yoon, Seok;Bang, Hyun-Tae;Kim, Geon-Young;Jeon, Haemin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.2
    • /
    • pp.123-131
    • /
    • 2021
  • The buffer is a key component of an engineered barrier system that safeguards the disposal of high-level radioactive waste. Buffers are located between disposal canisters and host rock, and they can restrain the release of radionuclides and protect canisters from the inflow of ground water. Since considerable heat is released from a disposal canister to the surrounding buffer, the thermal conductivity of the buffer is a very important parameter in the entire disposal safety. For this reason, a lot of research has been conducted on thermal conductivity prediction models that consider various factors. In this study, the thermal conductivity of a buffer is estimated using the machine learning methods of: linear regression, decision tree, support vector machine (SVM), ensemble, Gaussian process regression (GPR), neural network, deep belief network, and genetic programming. In the results, the machine learning methods such as ensemble, genetic programming, SVM with cubic parameter, and GPR showed better performance compared with the regression model, with the ensemble with XGBoost and Gaussian process regression models showing best performance.

Performance Characteristics of an Ensemble Machine Learning Model for Turbidity Prediction With Improved Data Imbalance (데이터 불균형 개선에 따른 탁도 예측 앙상블 머신러닝 모형의 성능 특성)

  • HyunSeok Yang;Jungsu Park
    • Ecology and Resilient Infrastructure
    • /
    • v.10 no.4
    • /
    • pp.107-115
    • /
    • 2023
  • High turbidity in source water can have adverse effects on water treatment plant operations and aquatic ecosystems, necessitating turbidity management. Consequently, research aimed at predicting river turbidity continues. This study developed a multi-class classification model for prediction of turbidity using LightGBM (Light Gradient Boosting Machine), a representative ensemble machine learning algorithm. The model utilized data that was classified into four classes ranging from 1 to 4 based on turbidity, from low to high. The number of input data points used for analysis varied among classes, with 945, 763, 95, and 25 data points for classes 1 to 4, respectively. The developed model exhibited precisions of 0.85, 0.71, 0.26, and 0.30, as well as recalls of 0.82, 0.76, 0.19, and 0.60 for classes 1 to 4, respectively. The model tended to perform less effectively in the minority classes due to the limited data available for these classes. To address data imbalance, the SMOTE (Synthetic Minority Over-sampling Technique) algorithm was applied, resulting in improved model performance. For classes 1 to 4, the Precision and Recall of the improved model were 0.88, 0.71, 0.26, 0.25 and 0.79, 0.76, 0.38, 0.60, respectively. This demonstrated that alleviating data imbalance led to a significant enhancement in Recall of the model. Furthermore, to analyze the impact of differences in input data composition addressing the input data imbalance, input data was constructed with various ratios for each class, and the model performances were compared. The results indicate that an appropriate composition ratio for model input data improves the performance of the machine learning model.

Neural Networks-Based Method for Electrocardiogram Classification

  • Maksym Kovalchuk;Viktoriia Kharchenko;Andrii Yavorskyi;Igor Bieda;Taras Panchenko
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.9
    • /
    • pp.186-191
    • /
    • 2023
  • Neural Networks are widely used for huge variety of tasks solution. Machine Learning methods are used also for signal and time series analysis, including electrocardiograms. Contemporary wearable devices, both medical and non-medical type like smart watch, allow to gather the data in real time uninterruptedly. This allows us to transfer these data for analysis or make an analysis on the device, and thus provide preliminary diagnosis, or at least fix some serious deviations. Different methods are being used for this kind of analysis, ranging from medical-oriented using distinctive features of the signal to machine learning and deep learning approaches. Here we will demonstrate a neural network-based approach to this task by building an ensemble of 1D CNN classifiers and a final classifier of selection using logistic regression, random forest or support vector machine, and make the conclusions of the comparison with other approaches.

Early Detection of Rice Leaf Blast Disease using Deep-Learning Techniques

  • Syed Rehan Shah;Syed Muhammad Waqas Shah;Hadia Bibi;Mirza Murad Baig
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.4
    • /
    • pp.211-221
    • /
    • 2024
  • Pakistan is a top producer and exporter of high-quality rice, but traditional methods are still being used for detecting rice diseases. This research project developed an automated rice blast disease diagnosis technique based on deep learning, image processing, and transfer learning with pre-trained models such as Inception V3, VGG16, VGG19, and ResNet50. The modified connection skipping ResNet 50 had the highest accuracy of 99.16%, while the other models achieved 98.16%, 98.47%, and 98.56%, respectively. In addition, CNN and an ensemble model K-nearest neighbor were explored for disease prediction, and the study demonstrated superior performance and disease prediction using recommended web-app approaches.

Comparing the Performance of 17 Machine Learning Models in Predicting Human Population Growth of Countries

  • Otoom, Mohammad Mahmood
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.1
    • /
    • pp.220-225
    • /
    • 2021
  • Human population growth rate is an important parameter for real-world planning. Common approaches rely upon fixed parameters like human population, mortality rate, fertility rate, which is collected historically to determine the region's population growth rate. Literature does not provide a solution for areas with no historical knowledge. In such areas, machine learning can solve the problem, but a multitude of machine learning algorithm makes it difficult to determine the best approach. Further, the missing feature is a common real-world problem. Thus, it is essential to compare and select the machine learning techniques which provide the best and most robust in the presence of missing features. This study compares 17 machine learning techniques (base learners and ensemble learners) performance in predicting the human population growth rate of the country. Among the 17 machine learning techniques, random forest outperformed all the other techniques both in predictive performance and robustness towards missing features. Thus, the study successfully demonstrates and compares machine learning techniques to predict the human population growth rate in settings where historical data and feature information is not available. Further, the study provides the best machine learning algorithm for performing population growth rate prediction.

Logistic Regression Ensemble Method for Extracting Significant Information from Social Texts (소셜 텍스트의 주요 정보 추출을 위한 로지스틱 회귀 앙상블 기법)

  • Kim, So Hyeon;Kim, Han Joon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.5
    • /
    • pp.279-284
    • /
    • 2017
  • Currenty, in the era of big data, text mining and opinion mining have been used in many domains, and one of their most important research issues is to extract significant information from social media. Thus in this paper, we propose a logistic regression ensemble method of finding the main body text from blog HTML. First, we extract structural features and text features from blog HTML tags. Then we construct a classification model with logistic regression and ensemble that can decide whether any given tags involve main body text or not. One of our important findings is that the main body text can be found through 'depth' features extracted from HTML tags. In our experiment using diverse topics of blog data collected from the web, our tag classification model achieved 99% in terms of accuracy, and it recalled 80.5% of documents that have tags involving the main body text.

Sentiment analysis of online food product review using ensemble technique (앙상블 기법을 활용한 온라인 음식 상품 리뷰 감성 분석)

  • Kim, Han-Min;Park, Kyungbo
    • Journal of Digital Convergence
    • /
    • v.17 no.4
    • /
    • pp.115-122
    • /
    • 2019
  • In the online marketplace, consumers are exposed to various products and freely express opinions. As consumer product reviews have a important effect on the success of online markets and other consumers, online market needs to accurately analyze the consumers' emotions about their products. Text mining, which is one of the data analysis techniques, can analyze the consumer's reviews on the products and efficiently manage the products. Previous studies have analyzed specific domains and less than 20,000 data, despite the different accuracy of the analysis results depending on the data domain and size. Further, there are few studies on additional factors that can improve the accuracy of analysis. This study analyzed 72,530 review data of food product domain that was not mainly covered in previous studies by using ensemble technique. We also examined the influence of summary review on improving accuracy of analysis. As a result of the study, this study found that Boosting ensemble technique has the highest accuracy of analysis. In addition, the summary review contributed to improving accuracy of the analysis.

AutoML and CNN-based Soft-voting Ensemble Classification Model For Road Traffic Emerging Risk Detection (도로교통 이머징 리스크 탐지를 위한 AutoML과 CNN 기반 소프트 보팅 앙상블 분류 모델)

  • Jeon, Byeong-Uk;Kang, Ji-Soo;Chung, Kyungyong
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.7
    • /
    • pp.14-20
    • /
    • 2021
  • Most accidents caused by road icing in winter lead to major accidents. Because it is difficult for the driver to detect the road icing in advance. In this work, we study how to accurately detect road traffic emerging risk using AutoML and CNN's ensemble model that use both structured and unstructured data. We train CNN-based road traffic emerging risk classification model using images that are unstructured data and AutoML-based road traffic emerging risk classification model using weather data that is structured data, respectively. After that the ensemble model is designed to complement the CNN-based classification model by inputting probability values derived from of each models. Through this, improves road traffic emerging risk classification performance and alerts drivers more accurately and quickly to enable safe driving.