• Title/Summary/Keyword: Ensemble Learning

Search Result 385, Processing Time 0.025 seconds

Robust Sentiment Classification of Metaverse Services Using a Pre-trained Language Model with Soft Voting

  • Haein Lee;Hae Sun Jung;Seon Hong Lee;Jang Hyun Kim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.9
    • /
    • pp.2334-2347
    • /
    • 2023
  • Metaverse services generate text data, data of ubiquitous computing, in real-time to analyze user emotions. Analysis of user emotions is an important task in metaverse services. This study aims to classify user sentiments using deep learning and pre-trained language models based on the transformer structure. Previous studies collected data from a single platform, whereas the current study incorporated the review data as "Metaverse" keyword from the YouTube and Google Play Store platforms for general utilization. As a result, the Bidirectional Encoder Representations from Transformers (BERT) and Robustly optimized BERT approach (RoBERTa) models using the soft voting mechanism achieved a highest accuracy of 88.57%. In addition, the area under the curve (AUC) score of the ensemble model comprising RoBERTa, BERT, and A Lite BERT (ALBERT) was 0.9458. The results demonstrate that the ensemble combined with the RoBERTa model exhibits good performance. Therefore, the RoBERTa model can be applied on platforms that provide metaverse services. The findings contribute to the advancement of natural language processing techniques in metaverse services, which are increasingly important in digital platforms and virtual environments. Overall, this study provides empirical evidence that sentiment analysis using deep learning and pre-trained language models is a promising approach to improving user experiences in metaverse services.

A Study on the Improvement of Submarine Detection Based on Mast Images Using An Ensemble Model of Convolutional Neural Networks (컨볼루션 신경망의 앙상블 모델을 활용한 마스트 영상 기반 잠수함 탐지율 향상에 관한 연구)

  • Jeong, Miae;Ma, Jungmok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.115-124
    • /
    • 2020
  • Due to the increasing threats of submarines from North Korea and other countries, ROK Navy should improve the detection capability of submarines. There are two ways to detect submarines : acoustic detection and non-acoustic detection. Since the acoustic-detection way has limitations in spite of its usefulness, it should have the complementary way. The non-acoustic detection is the way to detect submarines which are operating mast sets such as periscopes and snorkels by non-acoustic sensors. So, this paper proposes a new submarine non-acoustic detection model using an ensemble of Convolutional Neural Network models in order to automate the non-acoustic detection. The proposed model is trained to classify targets as 4 classes which are submarines, flag buoys, lighted buoys, small boats. Based on the numerical study with 10,287 images, we confirm the proposed model can achieve 91.5 % test accuracy for the non-acoustic detection of submarines.

User Identification Method using Palm Creases and Veins based on Deep Learning (손금과 손바닥 정맥을 함께 이용한 심층 신경망 기반 사용자 인식)

  • Kim, Seulbeen;Kim, Wonjun
    • Journal of Broadcast Engineering
    • /
    • v.23 no.3
    • /
    • pp.395-402
    • /
    • 2018
  • Human palms contain discriminative features for proving the identity of each person. In this paper, we present a novel method for user verification based on palmprints and palm veins. Specifically, the region of interest (ROI) is first determined to be forced to include the maximum amount of information with respect to underlying structures of a given palm image. The extracted ROI is subsequently enhanced by directional patterns and statistical characteristics of intensities. For multispectral palm images, each of convolutional neural networks (CNNs) is independently trained. In a spirit of ensemble, we finally combine network outputs to compute the probability of a given ROI image for determining the identity. Based on various experiments, we confirm that the proposed ensemble method is effective for user verification with palmprints and palm veins.

Identification of Individuals using Single-Lead Electrocardiogram Signal (단일 리드 심전도를 이용한 개인 식별)

  • Lim, Seohyun;Min, Kyeongran;Lee, Jongshill;Jang, Dongpyo;Kim, Inyoung
    • Journal of Biomedical Engineering Research
    • /
    • v.35 no.3
    • /
    • pp.42-49
    • /
    • 2014
  • We propose an individual identification method using a single-lead electrocardiogram signal. In this paper, lead I ECG is measured from subjects in various physical and psychological states. We performed a noise reduction for lead I signal as a preprocessing stage and this signal is used to acquire the representative beat waveform for individuals by utilizing the ensemble average. From the P-QRS-T waves, features are extracted to identify individuals, 19 using the duration and amplitude information, and 16 from the QRS complex acquired by applying Pan-Tompkins algorithm to the ensemble averaged waveform. To analyze the effect of each feature and to improve efficiency while maintaining the performance, Relief-F algorithm is used to select features from the 35 features extracted. Some or all of these 35 features were used in the support vector machine (SVM) learning and tests. The classification accuracy using the entire feature set was 98.34%. Experimental results show that it is possible to identify a person by features extracted from limb lead I signal only.

Boosted Regression Method based on Rejection Limits for Large-Scale Data (대량 데이터를 위한 제한거절 기반의 회귀부스팅 기법)

  • Kwon, Hyuk-Ho;Kim, Seung-Wook;Choi, Dong-Hoon;Lee, Kichun
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.42 no.4
    • /
    • pp.263-269
    • /
    • 2016
  • The purpose of this study is to challenge a computational regression-type problem, that is handling large-size data, in which conventional metamodeling techniques often fail in a practical sense. To solve such problems, regression-type boosting, one of ensemble model techniques, together with bootstrapping-based re-sampling is a reasonable choice. This study suggests weight updates by the amount of the residual itself and a new error decision criterion which constructs an ensemble model of models selectively chosen by rejection limits. Through these ideas, we propose AdaBoost.RMU.R as a metamodeling technique suitable for handling large-size data. To assess the performance of the proposed method in comparison to some existing methods, we used 6 mathematical problems. For each problem, we computed the average and the standard deviation of residuals between real response values and predicted response values. Results revealed that the average and the standard deviation of AdaBoost.RMU.R were improved than those of other algorithms.

Intrusion Detection System Utilizing Stack Ensemble and Adjacent Netflow (스텍앙상블과 인접 넷플로우를 활용한 침입 탐지 시스템)

  • Ji-Hyun Sung;Kwon-Yong Lee;Sang-Won Lee;Min-Jae Seok;Se-Rin Kim;Harksu Cho
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.6
    • /
    • pp.1033-1042
    • /
    • 2023
  • This paper proposes a network intrusion detection system that identifies abnormal flows within the network. The majority of datasets commonly used in research lack time-series information, making it challenging to improve detection rates for attacks with fewer instances due to a scarcity of sample data. However, there is insufficient research regarding detection approaches. In this study, we build upon previous research by using the Artificial neural network(ANN) model and a stack ensemble technique in our approach. To address the aforementioned issues, we incorporate temporal information by leveraging adjacent flows and enhance the learning of samples from sparse attacks, thereby improving both the overall detection rate and the detection rate for sparse attacks.

Named Entity Recognition Using Distant Supervision and Active Bagging (원거리 감독과 능동 배깅을 이용한 개체명 인식)

  • Lee, Seong-hee;Song, Yeong-kil;Kim, Hark-soo
    • Journal of KIISE
    • /
    • v.43 no.2
    • /
    • pp.269-274
    • /
    • 2016
  • Named entity recognition is a process which extracts named entities in sentences and determines categories of the named entities. Previous studies on named entity recognition have primarily been used for supervised learning. For supervised learning, a large training corpus manually annotated with named entity categories is needed, and it is a time-consuming and labor-intensive job to manually construct a large training corpus. We propose a semi-supervised learning method to minimize the cost needed for training corpus construction and to rapidly enhance the performance of named entity recognition. The proposed method uses distance supervision for the construction of the initial training corpus. It can then effectively remove noise sentences in the initial training corpus through the use of an active bagging method, an ensemble method of bagging and active learning. In the experiments, the proposed method improved the F1-score of named entity recognition from 67.36% to 76.42% after active bagging for 15 times.

Feature selection and prediction modeling of drug responsiveness in Pharmacogenomics (약물유전체학에서 약물반응 예측모형과 변수선택 방법)

  • Kim, Kyuhwan;Kim, Wonkuk
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.2
    • /
    • pp.153-166
    • /
    • 2021
  • A main goal of pharmacogenomics studies is to predict individual's drug responsiveness based on high dimensional genetic variables. Due to a large number of variables, feature selection is required in order to reduce the number of variables. The selected features are used to construct a predictive model using machine learning algorithms. In the present study, we applied several hybrid feature selection methods such as combinations of logistic regression, ReliefF, TurF, random forest, and LASSO to a next generation sequencing data set of 400 epilepsy patients. We then applied the selected features to machine learning methods including random forest, gradient boosting, and support vector machine as well as a stacking ensemble method. Our results showed that the stacking model with a hybrid feature selection of random forest and ReliefF performs better than with other combinations of approaches. Based on a 5-fold cross validation partition, the mean test accuracy value of the best model was 0.727 and the mean test AUC value of the best model was 0.761. It also appeared that the stacking models outperform than single machine learning predictive models when using the same selected features.

Cognitive Impairment Prediction Model Using AutoML and Lifelog

  • Hyunchul Choi;Chiho Yoon;Sae Bom Lee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.11
    • /
    • pp.53-63
    • /
    • 2023
  • This study developed a cognitive impairment predictive model as one of the screening tests for preventing dementia in the elderly by using Automated Machine Learning(AutoML). We used 'Wearable lifelog data for high-risk dementia patients' of National Information Society Agency, then conducted using PyCaret 3.0.0 in the Google Colaboratory environment. This study analysis steps are as follows; first, selecting five models demonstrating excellent classification performance for the model development and lifelog data analysis. Next, using ensemble learning to integrate these models and assess their performance. It was found that Voting Classifier, Gradient Boosting Classifier, Extreme Gradient Boosting, Light Gradient Boosting Machine, Extra Trees Classifier, and Random Forest Classifier model showed high predictive performance in that order. This study findings, furthermore, emphasized on the the crucial importance of 'Average respiration per minute during sleep' and 'Average heart rate per minute during sleep' as the most critical feature variables for accurate predictions. Finally, these study results suggest that consideration of the possibility of using machine learning and lifelog as a means to more effectively manage and prevent cognitive impairment in the elderly.

A Study on Classification of Variant Malware Family Based on ResNet-Variational AutoEncoder (ResNet-Variational AutoEncoder기반 변종 악성코드 패밀리 분류 연구)

  • Lee, Young-jeon;Han, Myung-Mook
    • Journal of Internet Computing and Services
    • /
    • v.22 no.2
    • /
    • pp.1-9
    • /
    • 2021
  • Traditionally, most malicious codes have been analyzed using feature information extracted by domain experts. However, this feature-based analysis method depends on the analyst's capabilities and has limitations in detecting variant malicious codes that have modified existing malicious codes. In this study, we propose a ResNet-Variational AutoEncder-based variant malware classification method that can classify a family of variant malware without domain expert intervention. The Variational AutoEncoder network has the characteristics of creating new data within a normal distribution and understanding the characteristics of the data well in the learning process of training data provided as input values. In this study, important features of malicious code could be extracted by extracting latent variables in the learning process of Variational AutoEncoder. In addition, transfer learning was performed to better learn the characteristics of the training data and increase the efficiency of learning. The learning parameters of the ResNet-152 model pre-trained with the ImageNet Dataset were transferred to the learning parameters of the Encoder Network. The ResNet-Variational AutoEncoder that performed transfer learning showed higher performance than the existing Variational AutoEncoder and provided learning efficiency. Meanwhile, an ensemble model, Stacking Classifier, was used as a method for classifying variant malicious codes. As a result of learning the Stacking Classifier based on the characteristic data of the variant malware extracted by the Encoder Network of the ResNet-VAE model, an accuracy of 98.66% and an F1-Score of 98.68 were obtained.