• Title/Summary/Keyword: Enkephalin

Search Result 48, Processing Time 0.031 seconds

Spinal orexin A attenuates opioid-induced mechanical hypersensitivity in the rat

  • Youn, Dong-ho;Jun, Jiyeon;Kim, Tae Wan;Park, Kibeom
    • The Korean Journal of Pain
    • /
    • v.35 no.4
    • /
    • pp.433-439
    • /
    • 2022
  • Background: Repeated administration of opioid analgesics for pain treatment can produce paradoxical hyperalgesia via peripheral and/or central mechanisms. Thus, this study investigated whether spinally (centrally) administered orexin A attenuates opioid-induced hyperalgesia (OIH). Methods: [D-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin (DAMGO), a selective µ-opioid receptor agonist, was used to induce mechanical hypersensitivity and was administered intradermally (4 times, 1-hour intervals) on the rat hind paw dorsum. To determine whether post- or pretreatments with spinal orexin A, dynorphin A, and anti-dynorphin A were effective in OIH, the drugs were injected through an intrathecal catheter whose tip was positioned dorsally at the L3 segment of the spinal cord (5 ㎍ for all). Mechanical hypersensitivity was assessed using von Frey monofilaments. Results: Repeated intradermal injections of DAMGO resulted in mechanical hypersensitivity in rats, lasting more than 8 days. Although the first intrathecal treatment of orexin A on the 6th day after DAMGO exposure did not show any significant effect on the mechanical threshold, the second (on the 8th day) significantly attenuated the DAMGO-induced mechanical hypersensitivity, which disappeared when the type 1 orexin receptor (OX1R) was blocked. However, intrathecal administration of dynorphin or an anti-dynorphin antibody (dynorphin antagonists) had no effect on DAMGO-induced hypersensitivity. Lastly, pretreatment with orexin A, dynorphin, or anti-dynorphin did not prevent DAMGO-induced mechanical hypersensitivity. Conclusions: Spinal orexin A attenuates mechanical hyperalgesia induced by repetitive intradermal injections of DAMGO through OX1R. These data suggest that OIH can be potentially treated by activating the orexin A-OX1R pathway in the spinal dorsal horn.

부신에서의 catecholamine분비작용 기전 검색(pentazocine에 의하여)

  • 임동윤;고석태
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1994.04a
    • /
    • pp.284-284
    • /
    • 1994
  • Pentazocine은 opioid 수용체에 대한 흥분작용과 길항작용을 겸유한 opioid계 약물로 알려져 있다. 본 연구에서 흰쥐 적출 관류부신 으로 부터 pentazocine의 catecholamine (CA) 분비작용을 관찰하여 그 기전을 규명하고 또한 다른 opioid의 작용과 비교하여 얻어진 결과는 다음과 같다. Pentazocine (30-300$\mu\textrm{g}$)을 부신정맥내에 주사하였을때 현저한 용량 의존성의 CA 분비 작용을 나타내었다. Pentazocine의 이러한 CA 분비작용은 chlorisondamine ($10^{-6}$M), naloxone (1.22 $\times$ $10^{-7}$M), morphine (1.73 $\times$ $10^{-5}$M). enkephalin (9.68 $\times$$10^{-6}$M), nicardipine ($10^{-6}$M) 및 TMB-8 ($10^{-5}$M)등의 전처치로 뚜렷이 억제되었으나 pirenzepine (2 $\times$ $10^{-6}$M)의 전처치에 의해서는 영향을 받지 않았다. $Ca^{++}$-free Krebs 용액으로 30분간 관류한 후에 pentazocine의 CA 분비작용은 현저한 감소를 나타내었다. Pentazocine (1.75 $\times$ $10^{-4}$M)을 20분간 관류시킨 후에 ACh (5.32 $\times$ $10^{-3}$M)과 DMPP ($10^{-4}$M)에 의한 CA 분비작용이 의의있게 감약되었다.

  • PDF

A Charge-Transfer Effect in Solid Phase Peptide Synthesis: Unsusally High Reactivity in Peptide Bond Formation between p-Nitrobenzophenone Oxime Resin Ester and Amino Acid 4-(Methylthio)phenyl Ester

  • Park, Dong-Hyun;Jung, Jae-Kyu;Lee, Yoon-Sik
    • Bulletin of the Korean Chemical Society
    • /
    • v.9 no.6
    • /
    • pp.394-398
    • /
    • 1988
  • Unusually high reactivity was found in peptide bond formation between p-nitrobenzophenone oxime resin (I) ester and amino acid 4-(methylthio)phentyl (MTP) esters. A charge-transfer complex between the two phenyl rings of the oxime resin (I) and the incoming amino acid MTP esters was considered to be responsible to accelerate the aminolysis reaction of the peptide oxime resin ester. Several di-, tri-, and pentapeptide fragments for preparing enkephalin and glutathione oligomers were successfully prepared in short times.

Effects of Neuroleptics on the Opioid Receptor Binding in the Mouse Striatum (마우스 선조체에서 Opioid 수용체 결합에 대한 Neuroleptics의 영향)

  • Kim, Soo-Kyung;Lee, Seong-Ryong;Park, Chang-Gyo
    • The Korean Journal of Pharmacology
    • /
    • v.30 no.3
    • /
    • pp.291-297
    • /
    • 1994
  • Our purpose was to gain insight into a possible modulatory role for ${\mu},\;{\delta},\;and\;{\kappa}$ opioid receptors by neuroleptics (chlorpromazine, thioridazine, haloperidol, sulpiride, and pimozide) in chronic morphine 5 mg/kg and 20 mg/kg treated mouse striatum. We attempted quantitative receptor assays using highly specific radioligands, $[^3H]\;DAGO\;([D-Ala^2,\;N-Mephe^4,\;Glycol^5]\;enkephalin)$, $[^3H]DPDPE\;([D-Pen^2,\;D-Pen^5]\;enkephalin)$ and $[^3H]\;DPN(diprenorphine)$ to measure the binding affinity in the experimental groups. The decrease of $[^3H]DAGO$ binding was potentiated by sulpiride and pimozide in the chronic morphine treatment (5 mg/kg and 20 mg/kg). The decrease of $[^3H]DPDPE$ binding was inhibited by chlorpromazine, thioridazine, haloperidol, sulpiride, and pimozide in chronic morphine treatment (5 mg/kg and 20 mg/kg). The decrease of $[^3H]\;DPN$ binding was significantly inhibited by chlorpromazine, thioridazine, sulpiride, and pimozide in chronic morphine 20 mg/kg treatment. $[^3H]\;DPN$ binding on the neuroleptics was antagonized by naloxone pretreatment in chronic morphine 20 mg/kg treatment. These findings suggest that neuroleptics influence opposing tonically active on the ${\delta},\;and\;{\kappa}$ opioid receptor compared with ${\mu}$ opioid receptor in the chronic morphine treated mouse striatum.

  • PDF

Effects of Electroacupuncture on Memory Modulation (전기 침 자극의 기억 조절 효과)

  • Lee, Sang-Kwan;Kim, Min-Soo;Ahn, Ryun-Sup;Kim, Moon-Soo;Sung, Kang-Keyng
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.6
    • /
    • pp.1543-1548
    • /
    • 2007
  • Recent experiments investigating the analgesic or anti-stress effects of electro-acupuncture provide extensive evidence that opioid or stress hormone system is involved in those effects, respectively. It has been also suggested that opioid or stress hormones modulate long-term memory consolidation or retrieval in animals and human subjects. This article reviews the possibilitythat electroacupuncture can modulate memory consolidation or retrieval. The release of serum cortisol is enhanced or reduced by high-frequency or low-frequency electroacupuncture, respectively. Also the release of beta endorphin and enkephalin is enhanced by low-frequency electroacupuncture and the release of dynorphin is enhanced by high-frequency electroacupunture. The memory consolidation is enhanced by post-training injection of Glucocorticoids, Naloxone or Dynorphin. So this review suggests strongly that memory consolidation can be modulated by electroacupuncture.

Immunohistochemical study of the endocrine cells of the gastrointestinal mucosa of the African clawed toad, Xenopus laevis (아프리카 발톱두꺼비의 소화관내분비세포에 관한 면역조직화학적 연구)

  • Lee, Hyeung-sik;Lee, Jae-hyun
    • Korean Journal of Veterinary Research
    • /
    • v.37 no.1
    • /
    • pp.9-13
    • /
    • 1997
  • The gastrointestinal endocrine cells of the African clawed toad, Xenopus laevis have been investigated immunohistochemically using the avidin-biotin method. Seven antisera were tested and three endocrine cell types immunoreacted with antisera to neurotensin, GRP and substance P. A moderate number of neurotensin-immunoreactive cells were weakly reacted in the small intestine. GRP-immunoreactive cells were mainly situated among the upper portion in the fundic glands, and the basal portion in the pyloric glands. These cells were oval and round in shape. On the other hand, in the intestine they were thin spindly cells with the epithelium. Substance P-immunoreactive cells were observed in among intestinal epithelium. However, no secretin-, motilin-, M-Enk- and PYY-immunoreactive cells were found in the GIT of the African clawed toads.

  • PDF

Influence of Intracerebroventricular Naloxone on the Renal Function of the Rabbit (측뇌실내(側腦室內) Naloxone의 가토현기능(家兎賢機能)에 미치는 영향(影響))

  • Choi, Bong-Kyu;Kook, Young Johng
    • The Korean Journal of Pharmacology
    • /
    • v.16 no.1 s.26
    • /
    • pp.15-24
    • /
    • 1980
  • As it has been reported that opioids such as morphine and methionine-enkephalin induced antidiuresis and antinatriuresis along with decrease in renal hemodynamics when given intracerebroventricularly(ivt), the renal action of ivt naloxone, a pure antagonist of morphine, and its influence upon the morphine action were investigated in this study. Less than $0.3{\mu}M/kg$ naloxone ivt did not change renal funtion. $1{\mu}M/kg$ ivt tended to, increase urine flow rate and induce transient natriuresis. $3{\mu}M/kg$ ivt produced transient: natriuresis. $3{\mu}M/kg$ ivt produced marked diuresis and natriuresis without any changes of renal hemodynamics. $10{\mu}M/kg$ ivt produced significant increases of urine flow rate and excretion of sodium without any changes of renal hemodynamics. Morphine $0.03{\mu}M/kg$ ivt produced marked decrement in renal hemodynamics along with decreases of water and sodium excretion, as previously shown by Kang. These effects of ivt morphine were completely abolished by the pretreatment with $0.3{\mu}M/kg$ naloxone. These observations provide further evidence that opiate receptors and endorphins in the brain might play an important role in the center-mediated regulation of the renal function in the rabbit.

  • PDF

Regulation of $[^3H]Norepinephrine$ Release by Opioids in Human Cerebral Cortex

  • Woo, Ran-Sook;Shin, Byoung-Soo;Kim, Chul-Jin;Shin, Min-Soo;Jeong, Min-Suk;Zhao, Rong-Jie;Kim, Kee-Won
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.1
    • /
    • pp.1-3
    • /
    • 2003
  • To investigate the receptors mediating the regulation of norepinephrine (NE) release in human cerebral cortex slices, we examined the effects of opioid agonists for ${\mu}$-, ${\delta}$-, and ${\kappa}$-receptors on the high potassium (15 mM)-evoked release of [$^3H$]NE. [$^3H$]NE release induced by high potassium was calcium-dependent and tetrodotoxin-sensitive. [$D-Pen^2$, $D-Pen^5$]enkephalin (DPDPE) and deltorphin II (Delt II) inhibited the stimulated release of norepinephrine in a dose-dependent manner. However, Tyr-D-Ala-Gly-(Me)Phe-Gly-ol and U69,593 did not influence the NE release. Inhibitory effect of DPDPE and Delt-II was antagonized by naloxone, naltrindole, 7-benzylidenaltrexone and naltriben. These results suggest that both ${\delta}_1$ and ${\delta}_2$ receptors are involved in regulation of NE release in human cerebral cortex.

Naltrexone Inhibits Catecholamine Secretion Evoked by Nicotinic Receptor Stimulation in the Perfused Rat Adrenal Medulla

  • Yu, Byung-Sik;Min, Seon-Young;Seo, Yoo-Seok;Choi, Cheol-Hee;Lee, Eun-Hwa;Lim, Dong-Yoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.9 no.4
    • /
    • pp.223-230
    • /
    • 2005
  • The purpose of the present study was to examine the effect of naltrexone, an opioid antagonist, on secretion of catecholamines (CA) evoked by cholinergic nicotinic stimulation and membrane-depolarization from the isolated perfused rat adrenal gland and to establish the mechanism of its action. Naltrexone $(3{\times}10^{-6}M)$ perfused into an adrenal vein for 60 min produced time-dependent inhibition in CA secretory responses evoked by ACh $(5.32{\times}10^{-3}M)$ , high $K^+$ $(5.6{\times}10^{-2}M)$ , DMPP ($10^{-4}$ M) and McN-A-343 $(10^{-4}M)$ . Naltrexone itself did also fail to affect basal CA output. In adrenal glands loaded with naltrexone $(3{\times}10^{-6}M)$ , the CA secretory responses evoked by Bay-K-8644, an activator of L-type $Ca^{2+}$ channels and cyclopiazonic acid, an inhibitor of cytoplasmic $Ca^{2+}-ATPase$, were also inhibited. However, in the presence of met-enkephalin $(5{\times}10^{-6}M)$ , a well-known opioid agonist, the CA secretory responses evoked by ACh, high $K^+$, DMPP, McN-A-343, Bay-K-8644 and cyclopiazonic acid were also significantly inhibited. Collectively, these experimental results demonstrate that naltrexone inhibits greatly CA secretion evoked by stimulation of cholinergic (both nicotinic and muscarinic) receptors as well as that by membrane depolarization. It seems that this inhibitory effect of naltrexone does not involve opioid receptors, but might be mediated by blocking both the calcium influx into the rat adrenal medullary chromaffin cells and the uptake of $Ca^{2+}$ into the cytoplasmic calcium store, which are at least partly relevant to the direct interaction with the nicotinic receptor itself.

Influence of Naloxone on Catecholamine Release Evoked by Nicotinic Receptor Stimulation in the Isolated Rat Adrenal Gland

  • Kim Ok-Min;Lim Geon-Han;Lim Dong-Yoon
    • Archives of Pharmacal Research
    • /
    • v.28 no.6
    • /
    • pp.699-708
    • /
    • 2005
  • The present study was designed to investigate the effect of naloxone, a well known opioid antagonist, on the secretion of catecholamines (CA) evoked by cholinergic stimulation and membrane-depolarization in the isolated perfused rat adrenal glands, and to establish its mechanism of action. Naloxone ($10^{-6}\~10^{-5}$ M), perfused into an adrenal vein for 60 min, produced dose- and time-dependent inhibition of CA secretory responses evoked by ACh ($5.32\times10^{-3}$ M), high K+ ($5.6\times10^{-2}$ M), DMPP ($10^{-4}$ M) and McN-A-343 ($10^{-4}$ M). Naloxone itself also failed to affect the basal CA output. In adrenal glands loaded with naloxone ($3\times10^{-6}$ M), the CA secretory responses evoked by Bay-K-8644, an activator of L-type $Ca^{2+}$ channels, and cyclopiazonic acid, an inhibitor of cytoplasmic $Ca^{2+}$-ATPase, were also inhibited. In the presence of met-enkephalin ($5\times10^{-6}$ M), a well known opioid agonist, the CA secretory responses evoked by ACh, high $K^+$, DMPP, McN-A-343, Bay-K-8644 and cyclopiazonic acid were also significantly inhibited. Taken together, these results suggest that naloxone greatly inhibits the CA secretion evoked by stimulation of cholinergic (both nicotinic and muscarinic) receptors as well as that by membrane depolarization. It seems that these inhibitory effects of naloxone does not involve opioid receptors, but might be mediated by blocking both the calcium influx into the rat adrenal medullary chromaffin cells and the uptake of $Ca^{2+}$ into the cytoplasmic calcium store, which are at least partly relevant to the direct interaction with the nicotinic receptor itself.