• Title/Summary/Keyword: Enkephalin

Search Result 48, Processing Time 0.031 seconds

Structure-Activity Relationships of 13- and 14-Membered Cyclic Partial Retro-Inverso Pentapeptides Related to Enkephalin

  • Hong, Nam-Joo
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.4
    • /
    • pp.874-880
    • /
    • 2010
  • A series of 13- and 14-membered cyclic enkephalin analogs based on the moderately $\mu$ selective prototype compound Tyr-C[D-$A_2bu$-Gly-Phe-Leu] 8a were synthesized to investigate the structure-activity relationship. The modifications of sequence were mainly focused on two positions 3 and 5, critical for the selective recognition for $\mu$ and $\delta$ opioid receptors. The substitution of hydrophobic $Leu^5$ with hydrophilic $Asp^5$ derivatives led to Tyr-C[D-$A_2bu$-Gly-Phe-Asp(N-Me)] 7 and Tyr-C[D-Glu-Phe-gPhe-rAsp(O-Me)] 5, the peptides with a large affinity losses at both $\mu$ and $\delta$ receptors. The substitution of $Phe^3$ with $Gly^3$ led to Tyr-C[D-Glu-Gly-gPhe-rLeu] 3 and Tyr-C[D-Glu-Gly-gPhe-D-rLeu] 4, the peptides with large affinity losses at $\mu$ receptors, indicating the critical role of phenyl ring of $Phe^3$ for $\mu$ receptor affinities. One atom reduction of the ring size from 14-membered analogs Tyr-C[D-Glu-Phe-gPhe-(L and D)-rLeu] 6a, 6b to 13-membered analogs Tyr-C[D-Asp-Phe-gPhe-(L and D)-rLeu] 1, 2 reduced the affinity at both $\mu$ and $\delta$ receptors, but increased the potency in the nociceptive assay, indicating the ring constrain is attributed to high nociceptive potency of the analogs. For the influence of D- or L-chirality of $Leu^5$ on the receptor selectivity, regardless of chirality and ring size, all cyclic diastereomers displayed marked $\mu$ selectivity with low potencies at the $\delta$ receptor. The retro-inverso analogs display similar or more active at $\mu$ receptor, but less active at $\delta$ receptor than the parent analogs.

Enzymatic Degradation of Leucine Enkephalin and $[D-Ala^2]$-Leucine Enkephalinamide in Various Rabbit Mucosa Extracts (토끼의 수종 점막 추출액중 로이신엔케팔린 및 [D-알라$^2]$-로이신엔케팔린아미드의 효소적 분해 특성)

  • Chun, In-Koo;Park, In-Sook
    • YAKHAK HOEJI
    • /
    • v.38 no.5
    • /
    • pp.530-543
    • /
    • 1994
  • To study the feasibility of transmucosal delivery of leucine enkephalin (Leu-Enk) and $[D-ala^2]$-leucine enkephalinamide (YAGFL), their degradation extents and pathways in various rabbit mucosa extracts were investigated by high performance liquid chromatography. The degradation of Leu-Enk and YAGFL was observed to follow the first-order kinetics. The degradation half-lives of Leu-Enk in the nasal, rectal and vaginal mucosal extracts were 1.62, 0.37 and 1.12 hrs and those of YAGFL were 30.55, 9.70 and 6.82 hrs, respectively, indicating Leu-Enk was degraded in a more extensive and rapid manner than YAGFL. But the mucosal and serosal extracts of the same mucosa showed the similar degradation rates for both pentapeptides. The degradation was most rapid in the neutral pH and increasing concentrations of substrates retarded the degradation rates. The maior hydrolytic fragments of Leu-Enk were Des-Tyr-Leu-Enk and tyrosine, indicating the enzymatic hydrolysis by aminopeptidases. However, the data also suggested endopeptidases such as dipeptidyl carboxypeptidase and dipeptidyl aminopeptidase could play some role in the degradation of Leu-Enk. On the other hand, the hydrolytic fragments of YAGFL in all the mucosa extracts were mainly Tyr-D-Ala-Gly and Phe-Leu-Amide, demonstrating the hydrolytic breakdown by endopeptidases. The degradation pathways were further explored by concomitantly determining the formation of smaller metabolites of primary hydrolytic fragments of Leu-Enk and YAGFL in the mucosa extracts.

  • PDF

Study of the Antinociception Induced by Opioids and the Proenkephalin Gene Expression in Spontaneously Hypertensive Rats (선천성 고혈압쥐에서의 Opioid에 의한 진통작용과 Proenkephalin유전자 발현에 대한 연구)

  • Suh Hong-Won;Lee Tae-Hee;Song Dong-Keun;Choi Seong-Ran;Jung Jun-Sub;Kim Yung-Hi
    • The Korean Journal of Pharmacology
    • /
    • v.31 no.1 s.57
    • /
    • pp.17-26
    • /
    • 1995
  • The present studies were carried out to determine if antinociceptive action of morphine and ${\beta}-endorphin$ administered intraventricularly was changed in. pentobarbital anesthetized spontaneously hypertensive rats (SHR) and Wistar-Kyoto (WKY) rats. Antinociception was assessed by the tail-flick test. The $ED_{50}$ values of antinociception for morphine administered intraventricularly were 1.9 and 1.2 nmol for WKY and SHR rats, respectively. The $ED_{50}$ values of antinociception for ${\beta}-endorphin$ administered intraventricularly were 0.40 and 0.12 nmol for WKY and SHR rats, respectively. The $[Met^5]-enkephalin$ (ME) and proenkephalin mRNA levels in midbrain, pons and medulla, or lumbar section of the spinal cord in WKY and SHR rats were measured by the radioimmunoassay and Northern blot assay, respectively. There were no differences of ME and proenkephalin mRNA levels in these tissues between WKY and SHR rats. The results suggest that ${\beta}-endorphin$ but not morphine administered intraventricularly produces a greater antinociception in SHR rats. This increased antinociceptive effect of ${\beta}-endorphin$ in SHR rats may be not, at least, due to the alterations of ME And proenkephalin mRNA levels in the midbrain, pons and medulla, or spinal cord.

  • PDF

Effect of Opioid on Nicotinic Receptor-Mediated Catecholamine Secretion in the Rat Adrenal Gland (횐쥐 부신에서 Opioid가 니코틴 수용체를 통한 카테콜아민 분비작용에 미치는 영향)

  • Lim, Dong-Yoon;Lee, Jong-Jin;Choi, Cheol-Hee
    • The Korean Journal of Pharmacology
    • /
    • v.28 no.2
    • /
    • pp.181-190
    • /
    • 1992
  • The present study was conducted to investigate the effect of opioids on catecholamine (CA) secretion evoked by a selective cholinergic nicotinic agonist, 1,1-dimethyl-4-phenyl piperazinium (DMPP) and acetylcholine from the retrogradely perfused rat adrenal glands. Methionine-enkephalin $(9.68{\times}10^{-6}\;M)$ caused a significant inhibition of CA secretion evoked by DMPP (100 uM) and $ACh\;(50\;{\mu}g)$, but had no effect on the spontaneous (basal) CA release. Morphine $(1.73{\times}10^{-5}\;M)$ attenuated considerablely the increase in CA release induced by DMPP and ACh. Morphine itself also did not affect the basal CA output. A 20 to 65% reduction of the DMPP- and ACh-evoked increase in CA release was observed after the pretreatment with methionine-enkephalin or morphine. The increase in CA release evoked by DMPP and ACh was reduced markedly by preloading with an opiate antagonist naloxone $(1.22{\times}10^{-7}\;M)$ while basal CA output was not affected by naloxone. These present experimental results suggest that the nicotinic stimulation-evoked CA release from the perfused rat adrenal gland is inhibited by endogenously released opioid peptides through activation of opiate receptors located in the adrenal gland.

  • PDF

Effects of a ${\delta}-opioid$ Agonist on the Brainstem Vestibular Nuclear Neuronal Activity of Rats

  • Kim, Tae-Sun;Huang, Mei;Jang, Myung-Joo;Jeong, Han-Seong;Park, Jong-Seong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.9 no.3
    • /
    • pp.137-141
    • /
    • 2005
  • This study was undertaken to investigate the effects of [$D-Ala^2$, D-Leu^5$]-enkephalin (DADLE) on the spontaneous activity of medial vestibular nuclear neurons of the rat. Sprague-Dawley rats, aged 14 to 16 days, were anesthetized with ether and decapitated. After enzymatic digestion, the brain stem portion of medial vestibular nuclear neuron was obtained by micropunching. The dissociated neurons were transferred to a recording chamber mounted on an inverted microscope, and spontaneous action potentials were recorded by standard patch-clamp techniques. The spontaneous action potentials were increased by DADLE in 12 cells and decreased in 3 cells. The spike frequency and resting membrane potential of these cells were increased by DADLE. The depth of afterhyperpolarization was not affected by DADLE. The potassium currents were decreased in 20 cells and increased in 5 cells. These results suggest that DADLE increases the neuronal activity of the medial vestibular nuclear neurons by altering resting membrane potential.

Cell Cycle Arrest by Treatment of D-Ala2-Leu5-enkephalin in Human Leukemia Cancer U937 Cell. (인체혈구암세포 U937의 D-Ala2-Leu5-enkephalin처리에 의한 세포 주기 억제 효과)

  • Lee, Jun-Hyuk;Choi, Woo-Young;Choi, Yung-Hyun;Choi, Byung-Tae
    • Journal of Life Science
    • /
    • v.19 no.5
    • /
    • pp.620-624
    • /
    • 2009
  • D-Ala2-Leu5-enkephalin (DADLE), a hibernation inducer, can induce hibernation-like state in vivo and in vitro. We treated U937 human leukemia cancer cells with DADLE and investigated its possible effect on transcription and proliferation. Treatment of U937 cells with DADLE resulted in growth inhibition and induction of apoptotic cell death on high-dose as measured by MTT assay and DNA flow cytometer analysis. Bcl-XL, c-IAP-2 and survivin genes especially showed decreases in mRNA levels. DADLE treatment also inhibited the levels of cyclooxygenase (COX)-2 mRNA without alteration of COX-1 expression. DNA flow cytometer analysis revealed that DADLE caused arrest of the cell cycle on low-dose, which was associated with a down-regulation of cyclin E at the transcriptional level. DADLE treatment induced a marked down-regulation of cyclin-dependent kinase (Cdk)-2, -4 and -6. In addition, treatment with DADLE decreased telomere associated genes such as, c-myc and TERT, and increased TEP-1 in U937 cells. These results suggest that DADLE can be an inhibition agent in the cell cycle of the human leukemia cancer U937 cell.

Enhanced Permeation of Leucine Enkephalin and [D-Ala2]-leucine Enkephalinamide across Nasal, Rectal and Vaginal Mucosae of Rabbit (토끼의 비강, 직장 및 질 점막을 통한 로이신엔케팔린과 [D-알라2]-로이신엔케팔린아미드의 투과 증진)

  • 전인구;박인숙;곽혜선
    • Biomolecules & Therapeutics
    • /
    • v.10 no.2
    • /
    • pp.104-113
    • /
    • 2002
  • The effects of enzyme inhibitors and penetration enhancers on the permeation of leucine enkephalin (Leu-Enk) and its synthetic analog, [${D-ala}^2$]-leucine enkephalinamide (YAGFL) across the nasal, rectal and vaginal mucosae were evaluated. Enzyme inhibitors and penetration enhancers employed for Leu-Enk permeation study were amastatin(AM), thimerosal(TM) and ethylenediaminetetraacetic acid disodium salt(EDTA), and sodium taurodihydrofusidate (STDHF). Those for YAGFL permeation study were TM, benzalkonium chloride(BC) and EDTA, and STDHF, sodium deoxycholate(SDC), sodium glycholate(SGC), glycyrrhizic acid ammonium salt (GAA), L-$\alpha$-Iysophosphatidylcholine(LPC) and mixed micelle (MM, STDHF: linoleic acid = 15 mM : 5 mM). The addition of TM alone on the donor and receptor solutions for Leu-Enk permeation study across all the three kinds of mucosae failed to inhibit the degradation; it completely degraded in 6 hrs, and no permeation occurred. However, with addition of three kinds of inhibitors together, the fluxes across nasal, rectal and vaginal mucosae were $\20.7{pm}2.5$>/TEX>,$\0.3{pm}0.05$>/TEX> and $\1.4{pm}0.5$ $\mu$\mid$textrm{m}$/$\textrm{cm}^2$/hr, respectively. Moreover, the addition of STDHF in the presence of the above three inhibitors enhanced permeation across nasal, rectal and vaginal mucosae 1.3, 15 and 1.3 times, respectively. YhGFL also degraded in the donor and receptor solutions rapidly as time went. With mixed inhibitors of TM and EDTA, the percents of YAGFL remaining in the donor solutions facing nasal, rectal and vaginal mucosae were 69.7, 69.8 and 79.8%, respectively; the percent permeated increased to 10, 2.1 and 5.7%, respectively. The addition of STDHF in the presence of either BC/EDTA or TW/EDTA increased the permeation 2.2, 11.0 and 2.9 times, and 2.21, 14.0 and 2.7 times for nasal, rectal and vaginal mucosae, respectively. With SDC, SGC, GAA, LPC ud MM in the presence of TM/EDTA increased permeation; especially, they increased permeation across vaginal mucosae effectively, and the enhancement factors were 12.5, 7.6, 8.7, 5.7 and 5.5, respectively. The degradation extent of YAGFL was correlated with protein concentrations in the epidermal and serosal extracts. The flux of YAGFL across nasal mucosa increased dose-dependently.

Inhibition of Enzymatic Degradation of Leucine Enkephalin and $[D-Ala^2]$-Leucine Enkephalinamide in Various Rabbit Mucosal Extracts by Inhibitors (효소 억제제에 의한 토끼의 점막 추출액중 로이신엔케팔린 및 [D-알라$^2$-로이신엔케팔린아미드의 분해 억제)

  • Chun, In-Koo;Park, In-Sook;Hyun, Jeen
    • Journal of Pharmaceutical Investigation
    • /
    • v.26 no.3
    • /
    • pp.175-185
    • /
    • 1996
  • To inhibit the enzymatic degradation of leucine enkephalin (Leu-Enk) and its synthetic analog. $[D-ala^2]$-leucine enkephalinamide (YAGFL), in the nasal, rectal and vaginal mucosal and serosal extracts of rabbits, effects of enzyme inhibitors such as amastatin (AM), puromycin (PM), thiorphan (TP), thimerosal (TM), EDTA, N-carboxymethyl-Phe-Leu (CPL), phenylethyl alcohol (PEA), phenylmercuric acetate (PMA), benzalkonium chloride (BC) and modified cyclodextrins, alone or in combination, were observed by assaying the pentapeptides staying intact during incubation. Mucosa extracts were prepared by exposing freshly-excised mucosal specimens mounted on Valia-Chien cells to isotonic phosphate buffer while stirring. The degradation of Leu-Enk and YAGFL followed the apparent first-order kinetics. The half-lives (mean) in the nasal, rectal and vaginal mucosal extracts were found to be 1.07, 0.33 and 1.14 hr for Leu-Enk, and 16.9, 6.2 and 6.8 hr for YAGFL, respectively. AM or PM, which is an aminopeptidase inhibitor, did not show a sufficient inhibition of Leu-Enk $(50\;{\mu}g/ml)$ degradation in all kinds of extracts. $Dimethyl-{\beta}-cyclodextrin\;(DM-{\beta}-CyD)$ decreased the degradation rate constants of Leu-Enk about 2 or 3 times, comparing with no additive. However, the use of mixed inhibitors of AM $(50\;{\mu}M)$/TM (0.25 mM)/EDTA (5 mM) resulted in a full stabilization of Leu-Enk by decreasing the degradation rate constants 67.3, 161.3 and 113.8 times far the nasal, rectal and vaginal mucosal extracts, respectively, comparing with no inhibitor. With mixed inhibitors, Leu-Enk remained intact more than 90% after 6 hr-incubation. In the stabilization of YAGFL, hM, TP or CPL alone showed little efffct, and some additives demonstrated a considerable inhibition of YAGFL degradation in the rank order of TM > BC > EDTA. However, the addition of mixed inhibitors such as TM (0.5 mM) and EDTA (5 mM) into the extracts protected YAGFL from the degradation by more than 85% even after 24 hr-incubation, suggesting almost complete inhibition of YAGFL degradation in the extract. On the other hand, $DM-{\beta}-CyD\;or\;hydroxypropyl-{\beta}-cyclodextrin$ (10%) were also found to retard enzymatic degradation rates of YAGFL markedly, and resulted in staying intact more than 80% of YAGFL in the nasal and vaginal mucosal extracts, and more than 60% in the rectal mucosal extract after 16 hr-incubation.

  • PDF

Buccal Delivery of [D-Ala2, D-Leu5]Enkephalin Incorporated in Mucoadhesive Poly(acrylic acid) Hydrogels

  • Lee, Jae-Hwi;Lee, Yoon-Jin;Kang, Kyoung-Hoon;Nam, Dae-Young;Choi, Young-Wook
    • Journal of Pharmaceutical Investigation
    • /
    • v.35 no.5
    • /
    • pp.369-373
    • /
    • 2005
  • The objectives of the current work is to understand the factors impacting the formulation and performance of a Carbopol mucoadhesive buccal delvery system for a model peptide drug, $[D-Ala{^2},\;D-Leu{^5}]$enkephalin (DADLE, Mw=569.7) with comparable chemical and enzymatic stability. Specifically, in vitro buccal DADLE delivery from the cross-linked poly(acrylic acid) (PAA) hydrogel system was characterized. In addition, the influences of several penetration enhancers on the ex vivo buccal absorption of DADLE were also studied. In this study, the PAA hydrogels generally swell to 100% of their original weight in the phosphate pH 7.4 buffer. The water penetration into the PAA hydrogel occurred based on a zero-order kinetics for the first 60 min and steadily decreased afterwards. From the release study, it can be seen that the initial DADLE release was so rapid and the rate of release of DADLE decreased as the time elapsed. The porcine buccal tissue was found to be permeable to DADLE with a flux value of $0.07%/cm{^2}/hr({\pm}0.01\;SD)$. From the ex vivo diffusion study, it was found that sodium taurodihydrofusidate showed a greater degree of enhancement compared to the phospholipids with an Enhancement Ratio (ER) of 8.7 compared to 2.7 and 1.9 for didecanoylphosphatidylcholine and lysophosphatidylcholine, respectively. The work encompassed within this paper has demonstrated the feasibility of using the PAA hydrogel delivery system with its good mucoadhesive properties for the buccal delivery of peptides.

Effect of Total Ginseng Saponin on the Opioid Receptor Binding in Mouse Brain (Mouse뇌에서 Opioid 수용체 결합력에 미치는 인삼의 영향)

  • Kim, Soo-Kyung;Lee, Seong-Ryong;Park, Chang-Gyo
    • Journal of Ginseng Research
    • /
    • v.19 no.3
    • /
    • pp.219-224
    • /
    • 1995
  • The modulatory effects of total ginseng saponin (TGS) on the 1, 6, and opioid receptor binding in morphine tolerance and dependence were examined in this study. The specific [$^{3}H$]DAGO ([D-$Ala^2$, N-$Mephe^4$, $Glyco^4$] enkephalin) binding was significantly increased in chronic morphine (10 mg/kg, i.p.) treated mouse striatum. The specific [$^{3}H$]DPDPE ([D-$Pen^2$, D-$Pen^5$] enkephalin) binding was ignificantly increased following morphine treatment in the mouse striatum and cortex. Also, an apparent decrease in the affinity of [$^{3}H$]DPN (diprenorphine) was observed after chronic morphine treatment in mouse striatum and cortex. 7GS produced a sleight increase of specific [$^{3}H$]DAGO, [$^{3}H$]DPDPE binding and a significant increase of specific [$^{3}H$]DPN binding in the mouse brain striatum. In cortex, TGS produced an inhibition of specific [$^{3}H$]DAGO and [$^{3}H$]DPDPE binding and increase of the specific [$^{3}H$]DPN binding. The prolonged administration of TGS (25, 50, 100, and 150 mg/kg, i.p., 3 wks) produced an inhibition of increased [$^{3}H$]DAGO specific binding following morphine without significant changes in the agonist binding to and receptors in mouse striatum and cortex. These contracted alterations in $\mu$, $\gamma$ and $\kappa$ opiate receptor binding were dependent in TGS dogs and brain sites.

  • PDF