• 제목/요약/키워드: Enhancement of oxidative tissue damage

검색결과 5건 처리시간 0.023초

Enhancement of Cyclosporine-Induced Oxidative Damage of Kidney Mitochondria by Iron

  • Jang, Yoon-Young;Han, Eun-Sook;Lee, Chung-Soo;Kim, Young-Ki;Song, Jin-Ho;Shin, Yong-Kyoo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제3권6호
    • /
    • pp.631-640
    • /
    • 1999
  • The present study investigated the stimulatory effects of iron (or ascorbate) on cyclosporine-induced kidney mitochondrial damage. Damaging effect of $50\;{\mu}M$ cyclosporine plus $20\;{\mu}M\;Fe^{2+}$ on mitochondrial lipids and proteins of rat kidney and hyaluronic acid was greater than the summation of oxidizing action of each compound alone, except sulfhydryl oxidation. Cyclosporine and $100\;{\mu}M$ ascorbate showed an enhanced damaging effect on lipids but not on proteins. The peroxidative action of cyclosporine on lipids was enhanced with increasing concentrations of $Fe^{2+}.$ Ferric ion $(20\;{\mu}M)$ also interacted with cyclosporine to stimulate lipid peroxidation. Damaging action of cyclosporine on mitochondrial lipids was enhanced by ascorbate $(100\;{\mu}M\;and\;1\;mM)$. Iron chelators, DTPA and EDTA, attenuated carbonyl formation induced by cyclosporine plus ascorbate. Cyclosporine $(100\;{\mu}M)$ and $50\;{\mu}M\;Fe^{2+}$ $(or\;100\;{\mu}M\;ascorbate)$ synergistically stimulated degradation of $2-{\alpha}$ deoxyribose. Cyclosporine $(1\;to\;100\;{\mu}M)$ reduced ferric ion in a dose dependent manner, which is much less than ascorbate action. Addition of $Fe^{2+}$ caused a change in absorbance spectrum of cyclosporine in $230{\sim}350$ nm of wavelengths. The results show that cyclosporine plus iron (or ascorbate) exerts an enhanced damaging effect on kidney mitochondria. Iron and ascorbate appear to promote the nephrotoxicity induced by cyclosporine.

  • PDF

Epithelial to mesenchymal transition (EMT) of feto-maternal reproductive tissues generates inflammation: a detrimental factor for preterm birth

  • Menon, Ramkumar
    • BMB Reports
    • /
    • 제55권8호
    • /
    • pp.370-379
    • /
    • 2022
  • Human pregnancy is a delicate and complex process where multiorgan interactions between two independent systems, the mother, and her fetus, maintain pregnancy. Intercellular interactions that can define homeostasis at the various cellular level between the two systems allow uninterrupted fetal growth and development until delivery. Interactions are needed for tissue remodeling during pregnancy at both fetal and maternal tissue layers. One of the mechanisms that help tissue remodeling is via cellular transitions where epithelial cells undergo a cyclic transition from epithelial to mesenchymal (EMT) and back from mesenchymal to epithelial (MET). Two major pregnancy-associated tissue systems that use EMT, and MET are the fetal membrane (amniochorion) amnion epithelial layer and cervical epithelial cells and will be reviewed here. EMT is often associated with localized inflammation, and it is a well-balanced process to facilitate tissue remodeling. Cyclic transition processes are important because a terminal state or the static state of EMT can cause accumulation of proinflammatory mesenchymal cells in the matrix regions of these tissues and increase localized inflammation that can cause tissue damage. Interactions that determine homeostasis are often controlled by both endocrine and paracrine mediators. Pregnancy maintenance hormone progesterone and its receptors are critical for maintaining the balance between EMT and MET. Increased intrauterine oxidative stress at term can force a static (terminal) EMT and increase inflammation that are physiologic processes that destabilize homeostasis that maintain pregnancy to promote labor and delivery of the fetus. However, conditions that can produce an untimely increase in EMT and inflammation can be pathologic. These tissue damages are often associated with adverse pregnancy complications such as preterm prelabor rupture of the membranes (pPROM) and spontaneous preterm birth (PTB). Therefore, an understanding of the biomolecular processes that maintain cyclic EMT-MET is critical to reducing the risk of pPROM and PTB. Extracellular vesicles (exosomes of 40-160 nm) that can carry various cargo are involved in cellular transitions as paracrine mediators. Exosomes can carry a variety of biomolecules as cargo. Studies specifically using exosomes from cells undergone EMT can carry a pro-inflammatory cargo and in a paracrine fashion can modify the neighboring tissue environment to cause enhancement of uterine inflammation.

Effects of Hexaconazole on Growth and Antioxidant Potential of Cucumber Seedlings under UV-B Radiation

  • Kim, Tae-Yun;Hong, Jung-Hee
    • 한국환경과학회지
    • /
    • 제21권12호
    • /
    • pp.1435-1447
    • /
    • 2012
  • The present study was conducted to determine the effect of hexaconazole (HEX), a triazole fungicide, on the growth, yield, photosynthetic response and antioxidant potential in cucumber (Cucumis sativus L.) plants subjected to UV-B stress. UV-B radiation and HEX were applied separately or in combination to cucumber seedlings. The growth parameters were significantly reduced under UV-B treatment, however, this growth inhibition was less in HEX treated plants. HEX caused noticeable changes in plant morphology such as reduced shoot length and leaf area, and increased leaf thickness. HEX was quite persistent in inhibiting shoot growth by causing a reduction in shoot fresh and dry weight. HEX noticeably recovered the UV-B induced inhibition of biomass production. Significant accumutation in anthocyanin and flavonoid pigments in the leaves occurred as a result of HEX or UV-B treatments. HEX permitted the survival of more green leaf tissue preventing chlorophyll content reduction and higher quantum yield for photosystemII under UV-B exposure. HEX treatment induced a transient rise in ABA levels in the leaves, and combined application of HEX and UV-B showed a significant enhancement of ABA content which activates $H_2O_2$ generation. UV-B exposure induced accumulation of $H_2O_2$ in the leaves, while HEX prevented UV-B induced increase in $H_2O_2$, indicating that HEX serves as an antioxidant agent able to scavenge $H_2O$ to protect cells from oxidative damage. An increase in the ascorbic acid was observed in the HEX treated cucumber leaves affecting many enzyme activities by removing $H_2O_2$ during photosynthetic processes. The activities of antioxidant enzymes including catalase(CAT), ascorbate peroxidase(APX), superoxide dismutase(SOD) and peroxidase(POD) in the leaves in the presence of HEX under UV-B stress were higher than those under UV-B stress alone. These findings suggest that HEX may participate in the enhanced tolerance to oxidative stress. From these results it can be concluded that HEX moderately ameliolate the effect of UV-B stress in cucumber by improving the components of antioxidant defense system.

Allithiamine Exerts Therapeutic Effects on Sepsis by Modulating Metabolic Flux during Dendritic Cell Activation

  • Choi, Eun Jung;Jeon, Chang Hyun;Park, Dong Ho;Kwon, Tae-Hwan
    • Molecules and Cells
    • /
    • 제43권11호
    • /
    • pp.964-973
    • /
    • 2020
  • Recent studies have highlighted that early enhancement of the glycolytic pathway is a mode of maintaining the proinflammatory status of immune cells. Thiamine, a wellknown co-activator of pyruvate dehydrogenase complex, a gatekeeping enzyme, shifts energy utilization of glucose from glycolysis to oxidative phosphorylation. Thus, we hypothesized that thiamine may modulate inflammation by alleviating metabolic shifts during immune cell activation. First, using allithiamine, which showed the most potent anti-inflammatory capacity among thiamine derivatives, we confirmed the inhibitory effects of allithiamine on the lipopolysaccharide (LPS)-induced pro-inflammatory cytokine production and maturation process in dendritic cells. We applied the LPS-induced sepsis model to examine whether allithiamine has a protective role in hyper-inflammatory status. We observed that allithiamine attenuated tissue damage and organ dysfunction during endotoxemia, even when the treatment was given after the early cytokine release. We assessed the changes in glucose metabolites during LPS-induced dendritic cell activation and found that allithiamine significantly inhibited glucose-driven citrate accumulation. We then examined the clinical implication of regulating metabolites during sepsis by performing a tail bleeding assay upon allithiamine treatment, which expands its capacity to hamper the coagulation process. Finally, we confirmed that the role of allithiamine in metabolic regulation is critical in exerting anti-inflammatory action by demonstrating its inhibitory effect upon mitochondrial citrate transporter activity. In conclusion, thiamine could be used as an alternative approach for controlling the immune response in patients with sepsis.

한약재 물 추출물의 생리활성 검색 및 MPTP-유도 신경독성에 대한 대황의 보호효과 (Screening of the Biologoical Activity from Water Extracts of the Medicinal Plants and the Protective Effect of R. palmatum on MTPT-induced Neurotoxicity)

  • 김태은;윤여민;박용인;김윤석;전병훈;김명동
    • 동의생리병리학회지
    • /
    • 제18권6호
    • /
    • pp.1666-1685
    • /
    • 2004
  • This present study was designed to screen medicinal plants for the treatment of brain diseases such as Parkinson's disease or aging. We tested the effects of the water extracts from 38 species medicinal plants on antioxidant capacity, monoamine oxidase B (MAO-B) inhibitory activity, acetylcholinesterase (AChE) inhibition and antiperoxidation activity in vitro. The water extracts from 38 species were tested on their antioxidant activity using radical scavenging effects against ABTS+. The water extract of C. sappan was showed the highest antioxidant capacity, the antioxidant activity at 1 Jig of herbal extract being 0.38mM TE. Lipid peroxidation in brain homogenates induced by NADPH and ADP-Fe/sup 2+/ was strong inhibited by C. sappan and R. palmatum extracts. Among the 38 medicinal plants investigated, R. palmatum showed significant biological activity (antioxidant capacity, MAO-B inhibiory activity, and AChE inhibitory activity). The protective efficacy of R. palmatum water extract on 1-methyl-4­phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism and its possible mechanism were studied in C57BL/6 mice. Treatment of R. palmatum water extract protected biomacromolecules such as lipids from oxidative damage induced by MPTP. The content of MDA in brain tissue was decreased significantly by R. palmatum extract. These results suggest that R. palmatum water extract plays on effective role in attenuating MPTP-induced neurotoxicity in mice. This protective effect of R. palmatum might be estimated the result from the inhibitory activity on monoamine oxidase B and the enhancement of antioxidant activity.