• 제목/요약/키워드: Enhanced phosphorus removal

검색결과 73건 처리시간 0.026초

MBR 공정에서의 인 제거 특성 (Characteristics of Biological Phosphorus Removal in the MBR)

  • 최희정;이승목
    • 대한환경공학회지
    • /
    • 제29권2호
    • /
    • pp.197-204
    • /
    • 2007
  • 이 연구는 EBPR(enhance biological phosphorus removal)의 혐기조건, 호기/무산소 조건 사이의 상호작용을 알아보고 인의 제거 속도와 인 제거에 미치는 영향인자들을 Batch-test로 조사하였다. 실험결과 무산소단계에서 인의 흡수율은 호기 단계보다 50% 정도 낮았고, 인 방출과 인 흡수의 상관관계는 다른 논문들에 비하여 낮았으며, 계수 b는 높았다. Batch-test의 측정 결과 다른 논문들에 비하여 인 방출과 인 흡수의 상관관계$(R^2=0.557)$는 낮았고 계수b (b=8.4049)는 높았다. 또한, 하수에서 인의 중요한 결합 파트너는 Ca, $Mg^{2+}$, Al, Fe 그리고 $K^+$인데 이 실험 결과 칼륨, 마그네슘 그리고 암모니움은 인과 함께 증감함으로써 인의 방출과 흡수에 밀접한 관계가 있음을 알 수 있었다. 즉, 혐기 단계에서 0.2 mol $K^+Ion$ / mol $PO_4-P$ Ion과 0.21 mol $Mg^{2+}Ion$ / mol $PO_4-P$ ion이 측정되어 인에 대한 칼륨 및 마그네슘의 비율은 1 : 5 정도임을 알 수 있었다.

Electrolyte Addition for Enhanced Wastewater Treatment by Electrolysis using Cu Electrode

  • Kim, Woo-Yeol;Yun, Chan-Young;Son, Dong-Jin;Chang, Duk;Kim, Dae-Gun;Hong, Ki-Ho
    • Journal of Electrochemical Science and Technology
    • /
    • 제8권1호
    • /
    • pp.35-42
    • /
    • 2017
  • In this study, the effect of electrolyte addition on the removal of organics and nutrients in electrochemical wastewater using a copper electrode, and the characteristics of the by-product of electrolysis were investigated. The removal of organics increased significantly as shorter reaction times upon the addition of chloride ion, and most of the electrolysis reaction was completed within 20 min. The reaction rate gradually increased in proportion to the $Cl^-$/COD ratio, whereas the highest removed mass of organic matter per mass of added electrolyte was observed at a $Cl^-$/COD ratio of 1. After the addition of electrolyte, significant removal of ammoniacal nitrogen was observed as a result of the enhanced generation of oxidizers such as hypochlorite. Excellent phosphorus removal was also achieved in a very short reaction time (within 2 min) by electro-coagulation. As the electrolysis progressed, the amount of by-product increased gradually, whereas a decrease of sludge volume index was observed after the addition of electrolyte. This indicated that the settling performance of the by-products was better, and their removal would be easily achieved.

칼슘과 마그네슘염을 이용한 축산폐수의 응집처리 (Treatment of stock wastewater by flocculation with Calsium and Magnesium salts)

  • 김재용
    • 환경위생공학
    • /
    • 제17권4호
    • /
    • pp.10-18
    • /
    • 2002
  • The changes of conventional clarification processe and an increase in treatment cost are required to meet increasingly stringent regulations related to the treated water quality. Although many enhanced coagulations have introduced to improve organic matter removal, the results to remove color, nitrogen and phosphorus as well as organic material have not been very efficient yet. In this context as new flocculation using calcium hydroxide and magnesum sulfate was carried out. The removal of waste matters such as SS, organic matter, COD, nitrogen and phosphorus contained in stock wastewater was carried out by using the combination of calcium hydroxide and magnesium sulfate. The flocculation was investigated as a function of coagulant dose, pH, mixing time, settling time and coagulant addition modes such as the sequential addition of the two coagulants and the simultaneous addition of them. The flocculation by the combination of calcium hydroxide and magnesium sulfate was compared with that by aluminum sulfate. The mechanism of flocculation was investigated as well. About 60% of COD in stock watewater was removed by flocculation with combination of calcium hydroxide and magnesium sulfate.

재순환에 의한 흡수성 바이오필터 시스템의 오수처리효율 향상 (Enhancement of Sewage Treatment Efficiencies by Recirculation in Absorbent Biofilter System)

  • 권순국;전기설;김성배
    • 한국농공학회논문집
    • /
    • 제47권3호
    • /
    • pp.69-76
    • /
    • 2005
  • An Absorbent Biofilter System (ABS) combined with the recirculation process was investigated for the feasible application in additional removing of organics (BOD, SS) as well as nutrients (TN, TP) from small Community wastewater in Korea. Polyurethane biofilter media with high porosity and large surface area were /used for the aerobic system. A part of treated wastewater was recirculated into the anoxic septic tank to promote removal of nutrients. The concentrations of BOD and SS of treated wastewater satisfied the regulations for small on-site wastewater treatment facility (10 mg/L) during the overall experimental period. The effluent concentrations of BOD and SS were decreased with enhancement of removal efficiencies of 95.7 and $96.7\%$. The nitrogen and phosphorus removal efficiencies by the recirculation increased to $52.9\%\;and\;43.2\%$ in average during the overall experimental period, respectively. With the improvement, these values were increased as much as additional 42 and $18\%$ compared with those of non-recirculation. The rates of nitrification and denitrification were enhanced showing $65\~77\%\;and\;42\~92\%$, respectively. The described process modification is a low cost and effective method of enhancing nitrogen and phosphorus removal, especially on existing systems without changing major design components of a treatment facility.

오염하천 수질개선을 위한 Hybrid형 인공습지의 적용 (Application of Hybrid Constructed Wetland System for Stream Water Quality Improvement)

  • 김승준;최용수;배우근
    • 한국물환경학회지
    • /
    • 제22권2호
    • /
    • pp.209-214
    • /
    • 2006
  • The purpose of this study is to improve the stream water quality by the experimental hybrid constructed wetland system. It consisted of the water layer, sand bed planted reeds, irises and roses, gravel bed, yellow-soil media bed and a flow shifter (FS) which can reverse top and bottom flow in the middle of the wetland. The organic compounds and nitrogen removal efficiencies varied with the seasons, namely temperature change. In summer, the mean efficiencies of COD and TN in the outflow from this wetland system were 63.4 and 48.0% and shown the highest, respectively, whereas, the suspended solids and phosphorus removal efficiencies seemed to be less affected by temperature. As a result of inspecting the decreasing trend of pollutants, nitrification-denitrification in the wetland was the major removal mechanism for nitrogen, the nitrogen reduction was especially enhanced by the application of a FS in the wetland, and phosphorus reduction was mainly occurred as a consequence of adsorption of the yellow-soil media.

외부탄소원을 사용한 SBBR의 공정 특성 및 질소제거 (Evaluation of SBBR Process Performance Focused on Nitrogen Removal with External Carbon Addition)

  • 한혜정;윤주환
    • 한국물환경학회지
    • /
    • 제22권3호
    • /
    • pp.566-571
    • /
    • 2006
  • A sequencing batch biofilm reactor (SBBR) operated with a cycle of anaerobic - aerobic - anoxic - aerobic has been evaluated for the nutrient removal characteristics. The sponge-like moving media was filled to about 10% of reactor volume. The sewage was the major substrate while external synthetic carbon substrate was added to the anoxic stage to enhance the nitrogen removal. The operational results indicated that maximum T-N and T-P removal efficiencies were 97% and 94%, respectively were achieved, while COD removal of 92%. The observations of significant nitrogen removal in the first aerobic stage indicated that nitrogen removal behaviour in this SBBR was different to conventional SBR. Although the reasons for aerobic nitrogen removal has speculated to either simultaneous nitrification and denitrification or anoxic denitrification inside of the media, further researches are required to confirm the observation. The specific oxygen uptake rate (SOUR) test with biofilm and suspended growth sludge indicated that biofilm in SBBR played a major role to remove substrates.

습지식물의 지상부 제거가 생산력과 영양염류 제거량에 미치는 효과 (Shoot Cutting Effects on the Productivity and Nutrient Removal of Some Wetland Plants)

  • 정연숙;오현경;노찬호;황길순
    • 환경생물
    • /
    • 제17권4호
    • /
    • pp.459-465
    • /
    • 1999
  • 본 연구는 우리나라 습지의 주요 우점종인 갈대, 줄 및 애기부들을 대상으로, 자연습지에서 생육기 중에 시기와 횟수를 달리하여 지상부를 제거하는 것이 생산력과 영양염류 제거능에 미치는 영향을 규명하고자 하였다. 지상부 제거는 세 종 모두에서 지상부 생산력과 영양염류 흡수량을 증가시켰으며, 최대효과를 위한 시기와 횟수 및 효과의 정도는 종에 따라 차이를 보였다. 즉, 갈대는 1차년도 실험에서 6월 제거구의 연총생산력이 1,014g/$m^2$로서 대조구의 1.9배이었고, 2차년도에는 5월 제거구가 1,494g/$m^2$ 로서 대조구의 1.3배이었다. 줄은 8월 제거구의 생산력이 1,386g/$m^2$으로서 대조구의 1.2배, 애기부들은 6월과 8월의 3회 제거구와 8월 제거구의 생산력이 각각 1,670, 1,620g/$m^2$로서 대조구의 1.1~l.2배이었다. 영양염류 제거량에서 갈대는 질소와 인이 1차년도에서 대조구의 2.0배와 1.8배, 2차년도에서 각각 1.4배, 줄은 2.4배와 1.8배 그리고 애기부들은 1.8배와 1.9배로서 생산력의 증가비율보다 더 많은 영양염류를 제거하였다. 종합적으로 생산력과 영양염류 제거량 그리고 관리의 경제적인 측면을 고려할 때, 갈대는 5~6월과 10월의 2회, 그리고 줄과 애기부들은 8월과 10월의 2회 제거하는 것이 효과적인 것으로 판단한다.

  • PDF

생물학적 회분식 인 제거 공정에서 pH 영향과 미생물 군집의 변화 (Influence of Different Operational pH Conditions to Microbial Community in Biological Sequencing Batch Phosphorus Removal Process)

  • 안조환
    • 한국물환경학회지
    • /
    • 제29권4호
    • /
    • pp.459-465
    • /
    • 2013
  • A sequencing batch reactor was operated under different pH conditions to see the influence of pH to microbial community in enhanced biological phosphorus removal (EBPR) systems. Long term influences of different steady-state pH conditions on the microbial community composition were evaluated by polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (DGGE) and fluorescence in situ hybridization (FISH). The shift in populations from polyphosphate-accumulating organisms (PAOs) to Alphaproteobacteria was observed when pH was changed from 7.5 to 7.0. Alphaproteobacteria with the typical morphological traits of tetrad-forming organisms (TFOs) eventually became dominant members. The alphaproteobacterial TFOs were the phenotype expected for glycogen-accumulating organisms (GAOs), which accumulate large amount of glycogen into the cell. The results strongly suggested that low operational pH condition encourages the appearance of the GAOs in EBPR process, significantly reducing the EBPR capacity.

Enhanced and Balanced Microalgal Wastewater Treatment (COD, N, and P) by Interval Inoculation of Activated Sludge

  • Lee, Sang-Ah;Lee, Nakyeong;Oh, Hee-Mock;Ahn, Chi-Yong
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권9호
    • /
    • pp.1434-1443
    • /
    • 2019
  • Although chemical oxygen demand (COD) is an important issue for wastewater treatment, COD reduction with microalgae has been less studied compared to nitrogen or phosphorus removal. COD removal is not efficient in conventional wastewater treatment using microalgae, because the algae release organic compounds, thereby finally increasing the COD level. This study focused on enhancing COD removal and meeting the effluent standard for discharge by optimizing sludge inoculation timing, which was an important factor in forming a desirable algae/bacteria consortium for more efficient COD removal and higher biomass productivity. Activated sludge has been added to reduce COD in many studies, but its inoculation was done at the start of cultivation. However, when the sludge was added after 3 days of cultivation, at which point the COD concentration started to increase again, the algal growth and biomass productivity were higher than those of the initial sludge inoculation and control (without sludge). Algal and bacterial cell numbers measured by qPCR were also higher with sludge inoculation at 3 days later. In a semi-continuous cultivation system, a hydraulic retention time of 5 days with sludge inoculation resulted in the highest biomass productivity and N/P removal. This study achieved a further improved COD removal than the conventional microalgal wastewater treatment, by introducing bacteria in activated sludge at optimized timing.