• Title/Summary/Keyword: Enhanced nucleate boiling surface

Search Result 17, Processing Time 0.023 seconds

Pool Boiling Heat Transfer Coefficients of R1234yf on Various Enhanced Surfaces (열전달 촉진 표면에서 R1234yf의 풀 비등 열전달계수)

  • Lee, Yohan;Kang, Dong Gyu;Seo, Hoon;Jung, Dongsoo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.3
    • /
    • pp.143-149
    • /
    • 2013
  • In this work, nucleate pool boiling heat transfer coefficients (HTCs) of R134a and R1234yf are measured, on flat plain, 26 fpi low fin, Turbo-B, Turbo-C and Thermoexcel-E surfaces. All data are taken at the liquid pool temperature of $7^{\circ}C$, on a small square copper plate ($9.53mm{\times}9.53mm$), at heat fluxes from $10kW/m^2$ to $200kW/m^2$, with an interval of $10kW/m^2$. Test results show that nucleate boiling HTCs of all enhanced surfaces are greatly improved, as compared to that of a plain surface. Nucleate pool boiling HTCs of R1234yf are very similar to those of R134a, for the five surfaces tested.

Development of a High Performance Bubble Jet Loop Heat Pipe Using the Enhanced Nucleate Boiling Surface in Evaporating Section (핵비등 촉진 전열면 증발부를 이용한 고성능 Bubble Jet Loop Heat Pipe 개발)

  • Kim, Jong-Soo;Shin, Jong-Seok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.363-367
    • /
    • 2015
  • In this study, a high performance Bubble Jet Loop Heat Pipe (BJLHP) was developed using the enhanced nucleate boiling surfaces in an evaporating section. A sintered tube and GEWA-T(Wieland) tube were used enhance nucleate boiling. The thermal performance of these BJLHP was compared with the conventional smooth tube BJLHP with an effective thermal conductivity. This experiment was conducted under the following conditions : working fluid, charging ratio and input power of R-141b, 50%vol., 75W and 100W, respectively. As a result, the effective thermal conductivity of BJLHP with a sintered tube in the evaporating section was 300% higher than the smooth tube BJLHP.

An Experimental Study on Boiling Heat Transfer of PF5060 on the Shape and Orientation of Micro-Fin Surfaces (마이크로휜 표면과 발열체 기울기에 따른 PE5060의 비등 열전달에 관한 실험적 연구)

  • Kim Yoon-Ho;Kim Choong;Lee Kyu-Jung;Kim Youngchan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.1 s.244
    • /
    • pp.74-81
    • /
    • 2006
  • Experiments to measure the pool boiling heat transfer on the micro-fin surfaces were performed with PF5060. The effects of various orientation and subcooling of heat surface on pool boiling performance were investigated under various heat-flux conditions for plain and micro-fin surfaces. The comparison between the results of this study and those of previous work shows a similar trend at the same conditions. From the results, it is proved that nucleate boiling performance is strongly dependent on the orientation, the micro-fin structure and the subcooling of heat surface. The heat flux on the surface with orientation angles of $45^{\circ}$ and $90^{\circ}$ was larger than that on horizontal surface(${\theta}=0^{\circ}$) at same wall superheat because of the effect of bubble sweeping. The nucleate boiling performance of micro-fin surfaces is enhanced by decreasing the fin size(WxL) and the pitch, respectively. The subcooling makes nucleate boiling performance lower for both micro-fin and plain surfaces.

Nucleate Boiling Heat Transfer from Micro Finned Surfaces with Subcooled FC-72 (FC-72를 이용한 마이크로 핀 표면에서의 핵비등 열전달)

  • Lim, Tae-Woo;You, Sam-Sang;Kim, Hwan-Sung
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.20 no.3
    • /
    • pp.410-415
    • /
    • 2008
  • To evaluate the performance of nucleate boiling heat transfer between a plain and micro-fin surfaces, the experimental tests have been carried out under various conditions with fluorinert liquid FC-72, which is chemically and electrically stable. Two kinds of micro fins with the dimensions of $200{{\mu}m}{\times}20{{\mu}m}$ and $100{{\mu}m}{\times}10{{\mu}m}$ (width x height) were fabricated on the surface of a silicon chip. The experiments were performed on the liquid subcooling of 5, 10 and 20K under the atmospheric condition. The presented data showed a similar trend in the comparison with result of Rainey & You. Due to its expanded surface areas, the heat flux properties has been significantly enhanced on micro-fin surface comparing to the plain surface.

CRITICAL HEAT FLUX FOR DOWNWARD-FACING BOILING ON A COATED HEMISPHERICAL VESSEL SURROUNDED BY AN INSULATION STRUCTURE

  • Yang, J.;Cheung, F.B.;Rempe, J.L.;Suh, K.Y.;Kim, S.B.
    • Nuclear Engineering and Technology
    • /
    • v.38 no.2
    • /
    • pp.139-146
    • /
    • 2006
  • An experimental study was performed to evaluate the effects of surface coating and an enhanced insulation structure on the downward facing boiling process and the critical heat flux on the outer surface of a hemispherical vessel. Steady-state boiling tests were conducted in the Subscale Boundary Layer Boiling (SBLB) facility using an enhanced vessel/insulation design for the cases with and without vessel coatings. Based on the boiling data, CHF correlations were obtained for both plain and coated vessels. It was found that the nucleate boiling rates and the local CHF limits for the case with micro-porous layer coating were consistently higher than those values for a plain vessel at the same angular location. The enhancement in the local CHF limits and nucleate boiling rates was mainly due to the micro-porous layer coating that increased the local liquid supply rate toward the vaporization sites on the vessel surface. For the case with thermal insulation, the local CHF limit tended to increase from the bottom center at first, then decrease toward the minimum gap location, and finally increase toward the equator. This non-monotonic behavior, which differed significantly from the case without thermal insulation, was evidently due to the local variation of the two-phase motions in the annular channel between the test vessel and the insulation structure.

FLOW BOILING HEAT TRANSFER FROM PLAIN AND MICROPOROUS COATED SURFACES IN SUBCOOLED FC-72

  • Rainey, K.N.;Li, G.;You, S.M.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.181-188
    • /
    • 2001
  • The present research is an experimental study of subcooled flow boiling behavior using flat, microporousenhanced square heater surfaces in pure FC-72. Two $1-cm^{2}$ copper surfaces, one highly polished (plain) and one microporous coated, were flush-mounted into a 12.7 mm square, horizontal flow channel. Testing was performed for fluid velocities ranging from 0.5 to 4 m/s (Reynolds numbers from 18,700 to 174,500) and pure subcooling levels from 4 to 20 K. Results showed both surfaces' nucleate flow boiling curves collapsed to one line showing insensitivity to fluid velocity and subcooling. The log-log slope of the microporous surface nucleate boiling curves was lower than the plain surface due to the conductive thermal resistance of the microporous coating layer. Both, increased fluid velocity and subcooling, increase the CHF values for both surfaces, however, the already enhanced boiling characteristics of the microporous coating appear dominant and require higher fluid velocities to provide additional enhancement of CHF to the microporous surface.

  • PDF

Pool Boiling Heat Transfer Coefficients of Water Up to Critical Heat flux on Enhanced Surfaces (열전달 촉진 표면에서 임계 열유속까지의 물의 풀 비등 열전달계수)

  • Lee, Yo-Han;Gyu, Kang-Dong;Jung, Dong-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.3
    • /
    • pp.194-200
    • /
    • 2011
  • In this work, nucleate pool boiling heat transfer coefficients(HTCs) of pure water are measured on horizontal 26 fpi low fin, Turbo-B and Thermoexcel-E square surfaces of 9.53 mm length. HTCs are taken from 10 $kW/m^2$ to critical heat flux for all surfaces. Test results show that critical heat fluxes(CHFs) of all enhanced surfaces are greatly improved as compared to that of a plain surface. CHFs of water on the 26 fpi low fin surface, Thermoexcel-E surface, and Turbo-B are increased up to 320%, 275%, and 150% as compared to that of the plain surface, respectively. CHF of the Turbo-B enhanced surface is lower than that of the 26 fpi low fin surface due to the surface geometry. The heat transfer enhancement ratios of the Thermoexcel-E surface, low fin surface and Turbo-B enhanced surface are 1.6~2.9, 1.6~2.1, 1.4~1.7 respectively in the range of heat fluxes tested. Judging from these results, it can be said that these types of enhanced surfaces can be used in heat transfer applications at high heat fluxes.

Subcooled Burnout Heat Flux on a Heated Surface with Impinging Water Jet (충돌수분류(衝突水噴流)에 의한 서브쿨 Burnout열류속(熱流束)에 관한 연구)

  • Ohm, K.C.;Lee, J.S.;Park, S.Y.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.4
    • /
    • pp.527-536
    • /
    • 1996
  • Convective nucleate boiling and burnout heat flux have been studied on a flat, downward facing, constant heat flux surface cooled by an impinging water jet. The tests are progressed from low, nonboiling power to high, burnout heat flux power. The jet velocity and the subcooling do not affect the nucleate boiling curve of $q{\sim}{\Delta}T_{sat}$ diagram, but the supplementary water height affects the curve. For the case of dimensionless height of supplementary water S/D=1, the boiling curve shift to the heigher heat flux than that of S/D=0 or S/D=2. Burnout heat flux is enhanced with increasing jet velocity and subcooling. Also. by using the supplementary water(S/D=1 or S/D=2), burnout heat flux is larger than that of the simple water jet(S/D=0). A generalized correlation for the burnout heat flux data in the present boiling system with an impinging water jet is successfully evolved.

  • PDF

Boiling Heat Transfer Coefficients of Nanofluids Using Carbon Nanotubes (탄소나노튜브를 적용한 나노유체의 비등 열전달계수)

  • Lee, Yo-Han;Jung, Dong-Soo
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.5
    • /
    • pp.35-44
    • /
    • 2009
  • In this study, boiling heat transfer coefficients(HTCs) and critical heat flux(CHF) are measured on a smooth square flat copper heater in a pool of pure water with and without carbon nano tubes(CNTs) dispersed at $60^{\circ}C$. Tested aqueous nanofluids are prepared using multi-walled CNTs whose volume concentrations are 0.0001, 0.001, 0.01, and 0.05%. For dispersion of CNTs, polyvinyl pyrrolidone(PVP) is used in distilled water. Pool boiling HTCs are taken from $10kW/m^2$ to critical heat flux for all nanofluids. Test results show that the pool boiling HTCs of the nanofluids are lower than those of pure water in entire nucleate boiling regime. On the other hand, critical heat flux is enhanced greatly showing up to 200% increase at volume concentration of 0.001% CNTs as compared to that of pure water. This is related to the change of surface characteristics by the deposition of CNTs. This deposition makes a thin CNT layer on the surface and the active nucleation sites of heat transfer surface are decreased due to this layer. The thin layer acts as the thermal resistance and also decreases the bubble generation rate resulting in a decrease in pool boiling HTCs. The same layer, however, maintains the nucleate boiling even at very high heat fluxes and reduces the formation of large vapor canopy at near CHF resulting in a significant increase in CHF.

Pool Boiling Heat Transfer Coefficients Up to Critical Heat flux on Thermoexcel-E Enhanced Surface (Thermoexcel-E 촉진 표면에서 임계 열유속까지의 풀 비등 열전달계수)

  • Lee, Yo-Han;Kang, Dong-Gyu;Jang, Cheol-Han;Jung, Dong-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.9
    • /
    • pp.685-692
    • /
    • 2012
  • In this work, nucleate pool boiling heat transfer coefficients(HTCs) of 5 refrigerants of different vapor pressure are measured on horizontal Thermoexcel-E square surface of 9.53 mm length. Tested refrigerants are R32, R22, R134a, R152a and R245fa. HTCs are taken from 10 $kW/m^2$ to critical heat fluxes for all refrigerant at $7^{\circ}C$. Wall and fluid temperatures are measured directly by thermocouples located underneath the test surface and in the liquid pool. Test results show that critical heat fluxes(CHFs) of Thermoexcel-E enhanced surface are greatly improved as compared to that of a plain surface in all tested refrigerants. CHFs of all refrigerants on the Thermoexcel-E surface are increased up to 100% as compared to that of the plain surface. The improvement of Thermoexcel-E surface in CHF, however, is lower than that of the low fin surface. HTCs on Thermoexcel-E surface increase with heat flux. But after certain heat flux, HTCs began to decrease due to the difficulty in bubble removal caused by the inherent complex nature of this surface. Therefore, at heat fluxes close to the critical one, sudden decrease in HTCs needs to be considered in thermal design with Thermoexcel-E surface.