• Title/Summary/Keyword: Enhanced Route Protocol

Search Result 25, Processing Time 0.025 seconds

ASESDP : An Efficient Service Discovery Protocol in Pervasive Computing Environments

  • Ma, Qianli;Liao, Minghong;Jiang, Shouxu;Hong, Wan-Pyo;Gao, Zhenguo
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.4
    • /
    • pp.396-404
    • /
    • 2008
  • Service discovery is the technology of finding needed services in networks, and a key point in pervasive computing environments. This paper presents a novel service discovery protocol: ASESDP(AIP and SRR Enhanced Service Discovery Protocol). In ASESDP, tow schemes are proposed to enhance its performance: AIP(Advertisement Information Piggybacked) and SRR(Shortest Reply Route). In AIP, parts of advertisement information are piggybacked in the service reply packet, which makes the advertisement information propagating along the reply path, and spreads its transmission area. In SRR, in order to reduce the service response time, the shortest reply route is chosen to forward the service reply packet to the source node sending the service request. With the theoretical analysis and Glomosim simulation results, it is verified that ASESDP can reduce the number of service request packets, save the response time, and improve the efficiency of service discovery.

An Enhanced Route Optimization Scheme for Multiple LMAs in PMIPv6 Domain (다중 LMA 환경을 고려한 Proxy Mobile IP 기반의 향상된 경로 최적화 방안)

  • Jang, Jong-Min;Seo, Won-Kyeong;Choi, Jea-In;Cho, You-Ze
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.1A
    • /
    • pp.82-89
    • /
    • 2011
  • The Proxy Mobile IPv6 is a network-based localized mobility management protocol. In the PMIPv6, Mobile Nodes are topologically anchored at a Local Mobility Anchor, which forwards all data packets for registered Mobile Nodes. Since all data packets destined for the Mobile Nodes a1ways traverse the Mobile Nodes's Local Mobility Anchor, the LMA might be bottleneck and the end-to-end de1ay are increased. Therefore, in this paper, we proposed an enhanced Route Optimization scheme in Multiple Local Mobility Anchors environment. In order to rapid1y detect Route Optimization, we designed Domain Information Table in Mobility Access Gateway. Furthermore, we use Correspondent Binding Cache in Local Mobility Anchor to maintain Route Optimization information during Mobile Nodes's handover. To solve packet loss and reodering problems during handover, we propose a new buffering and forwarding scheme.

A Robust Route Maintenance Scheme Considering Node Mobility in Wireless Ad-hoc Networks (무선 Ad-hoc 네트워크에서 노드 이동성을 고려한 견고한 경로 관리 기법)

  • Kim, Kwan-Woong;Bae, Sung-Hwan;Kim, Dae-Ik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.4A
    • /
    • pp.309-315
    • /
    • 2009
  • Wireless Ad-hoc networks are dynamic networks that consist of mobile nodes. Nodes in Ad-hoc networks are usually laptops, PDAs or mobile phones. These devices feature Bluetooth and/or IEEE 802.11 (WiFi) network interfaces and communicate in a decentralized manner. Due to characteristics of Ad-hoc networks, Mobility is a key feature of routing protocol design. In this paper, we present an enhanced routing maintenance scheme that cope with topology changes pre-actively. The key feature of the proposed scheme is to switch next-hop node to alternative neighbor node before link breakage for preventing route failure. From extensive experiments by using NS2, the performance of the proposed scheme has been improved by comparison to AODV protocol.

CE-OLSR: a Cartography and Stability Enhanced OLSR for Dynamic MANETs with Obstacles

  • Belghith, Abdelfettah;Belhassen, Mohamed
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.1
    • /
    • pp.270-286
    • /
    • 2012
  • In this paper, we propose a novel routing protocol called the Cartography Enhanced OLSR (CE-OLSR) for multi hop mobile ad hoc networks (multi hop MANETs). CE-OLSR is based on an efficient cartography gathering scheme and a stability routing approach. The cartography gathering scheme is non intrusive and uses the exact OLSR reduced signaling traffic, but in a more elegant and efficient way to improve responsiveness to the network dynamics. This cartography is a much richer and accurate view than the mere network topology gathered and used by OLSR. The stability routing approach uses a reduced view of the collected cartography that only includes links not exceeding a certain distance threshold and do not cross obstacles. In urban environments, IEEE 802.11 radio signals undergo severe radio shadowing and fading effects and may be completely obstructed by obstacles such as buildings. Extensive simulations are conducted to study the performances of CE-OLSR and compare them with those of OLSR. We show that CE-OLSR greatly outperforms OLSR in delivering a high percentage of route validity, a much higher throughput and a much lower average delay. In particular the extremely low average delay exacerbated by CE-OLSR makes it a viable candidate for the transport of real time data traffic in multi hop MANETs.

A Study on Mobile IP-over-MPLS Framework to Provide Mobile IP service with Guarantied QoS (QoS 보장형 이동성 IP 서비스 제공을 위한 Mobile IP-over-MPLS 구조 연구)

  • 김호철;김영탁
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.9B
    • /
    • pp.834-844
    • /
    • 2003
  • Mobile IP has some performance degrade factors such as triangle routing and packet loss by the hand-off because the original IP was designed for the fixed network. The design goal for the next generation Internet service is to guarantee QoS. So, Mobile IP also should be able to provide the guaranteed QoS with performance enhancement because it is an IP-based mobile Internet service. In this paper, we propose route optimization, smooth hand-off scheme and MIP-LDP(Mobile IP-Label Distribution Protocol) on Mobile IP-over-MPLS framework to enhance the performance of the previously researched Mobile IP-over-MPLS schemes. The proposed framework enhanced long routing path problem and packet loss problem by the hand-off.

Enhanced Dynamic Management of Mobile Agent in Location Based Routing

  • Narahara, Yuichiro;Shiokawa, Shigeki
    • Journal of Multimedia Information System
    • /
    • v.3 no.4
    • /
    • pp.129-134
    • /
    • 2016
  • A routing protocol in mobile ad hoc networks is important, and a location based routing has attracted attention. We have proposed a method, in which plural mobile agents (MA) manage location information and construct a route and the number of MA dynamically changes depending on the network situation. However, the area where each MA manages is not always appropriate. This would increase the network load due to unnecessary split and mergence of MAs. To solve this problem, in this paper, we propose an enhanced method. In this method, the MA management area is properly determined based on distribution of nodes. From the performance evaluation, we show that the proposed method outperforms conventional methods in terms of packet delivery rate when network load is high.

An Enhanced Routing Protocol for Supporting Node Mobility in Multi-hop Ad-hoc Networks (다중 홉 Ad-hoc 네트워크에서 노드이동성을 고려한 라우팅 프로토콜에 관한 연구)

  • Kim, Kwan-Woong;Kim, Byun-Gon;Kim, Yong-Kab
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.9
    • /
    • pp.1665-1671
    • /
    • 2007
  • Mobile Ad hoc Networks (MANETs) refer to autonomous networks in which wireless data communications are established between multiple nodes in a given coverage area without a base station or centralized administration. Because of node mobility and limited battery life, the network topology may changes frequently. Selecting the most reliable path during route discovery process is important to improve performance in ad-hoc networks. In this study, we proposed an enhanced routing protocol based on AODV by monitoring variation of receiving signal strength. New metric function that consists of node mobility and hops of path is used for routing decision. From extensive experiments by using NS-2, The performance of the proposed routing scheme has been imp개ved by comparison to AODV protocol.

On Improving Reliability of E-ODMRP (E-ODMRP의 신뢰성 향상에 관한 연구)

  • Jung, Young-Woo;Park, Joon-Sang
    • The KIPS Transactions:PartC
    • /
    • v.17C no.6
    • /
    • pp.465-470
    • /
    • 2010
  • In this paper we propose a method which can be used to enhance the reliability of E-ODMRP (Enhanced On-Demand Multicast Routing Protocol). E-ODMRP has low overhead compared to its predecessors since it performs periodic refresh at a rate dynamically adapted to the nodes' mobility and adopts the local recovery. Upon detecting a broken route, a node performs a local search to graft to the forwarding mesh proactively. However in E-ODMRP there is no packet recovery mechanism. A receiver may lose some packets when it is detached from the multicast tree. We propose a simple packet recovery mechanism that can be incorporated into E-ODMRP for enhanced reliability. We show via simulation that our mechanism effectively enhances the reliability of E-ODMRP.

An Enhanced AODV based Energy-aware Routing Protocol for Route Maintenance in MANET (배터리 용량을 고려한 개선된 AODV 라우팅 알고리즘)

  • Kim Kwan-Woong;Lee Jeong-Soo;Pan Ce;Chung Kyung-Taek;Chon Byoung-Sil
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.4 s.346
    • /
    • pp.22-30
    • /
    • 2006
  • In this paper, the goal of our proposed algorithm is to reduce link -failure and route failure caused by dead nodes which consume all of the battery life. I propose an algorithm which provides a ability of changing mutes to neighbor nodes before some of intermediate nodes be shutting don to get the stable route maintenance. To achieve this goal, The proposed routing algerian uses additional new messages to check energy status for monitoring energy of neighbor nodes and to change the path to a neighbor node. From extensive simulations, results show that possibility of cut-offs and time-delay cause of packet-loss have been decreased and also the improvement of transmission effectiveness.

Mutual Authentication and Route Optimization between MN and CN using AAA in Mobile IPv6 (Mobile IPv6에서 AAA를 이용한 MN과 CN간의 상호 인증 및 경로 최적화)

  • 김미영;문영성
    • Journal of KIISE:Information Networking
    • /
    • v.31 no.5
    • /
    • pp.429-437
    • /
    • 2004
  • The mobileip working group is equipped with the RR(Return Routabilit) taking the simple procedures and small amount of cryptographic operations by considering the processing capability of the mobile node however it dose not provide security features enough. To replace with enhanced methods, mobileip WG is making an effort to find the approved solutions include CGA(Craptographically Generated Address), IPsec(Internet Protocol Security) as well as the existing infrastructure such as AAA(Authentication, Authorization and Account) and PKI(Public Key Infrastructure). In this paper, we propose the authentication and route optimization based on AAA suitable for the requested security service for its successful story in wireless network such as 802.11 and 3GPP(3rd Generation Partnership Project) as well as wired one. We analyze the effectiveness of our scheme according to the traffic and mobility properties. The result shows the cost reduction up to 20 percent comparing with RR.