• Title/Summary/Keyword: Enhanced Rg3

Search Result 49, Processing Time 0.031 seconds

Effect of sun ginseng potentiation on epirubicin and paclitaxel-induced apoptosis in human cervical cancer cells

  • Lin, Yingjia;Jiang, Dan;Li, Yang;Han, Xinye;Yu, Di;Park, Jeong Hill;Jin, Ying-Hua
    • Journal of Ginseng Research
    • /
    • v.39 no.1
    • /
    • pp.22-28
    • /
    • 2015
  • Background: Sun ginseng (SG), a specific formulation of quality-controlled red ginseng, contains approximately equal amounts of three major ginsenosides (RK1, Rg3, and Rg5), which reportedly has antitumor-promoting activities in animal models. Methods: MTT assay was used to assess whether SG can potentiate the anticancer activity of epirubicin or paclitaxel in human cervical adenocarcinoma HeLa cells, human colon cancer SW111C cells, and SW480 cells; apoptosis status was analyzed by annexin V-FITC and PI and analyzed by flow cytometry; and apoptosis pathway was studied by analysis of caspase-3, -8, and -9 activation, mitochondrial accumulation of Bax and Bak, and cytochrome c release. Results: SG remarkably enhances cancer cell death induced by epirubicin or paclitaxel in human cervical adenocarcinoma HeLa cells, human colon cancer SW111C cells, and SW480 cells. Results of the mechanism study highlighted the cooperation between SG and epirubicin or paclitaxel in activating caspase-3 and -9 but not caspase-8. Moreover, SG significantly increased the mitochondrial accumulation of both Bax and Bak triggered by epirubicin or paclitaxel as well as the subsequent release of cytochrome c in the targeted cells. Conclusion: SG significantly potentiated the anticancer activities of epirubicin and paclitaxel in a synergistic manner. These effects were associated with the increased mitochondrial accumulation of both Bax and Bak that led to an enhanced cytochrome c release, caspase-9/-3 activation, and apoptosis. Treating cancer cells by combining epirubicin and paclitaxel with SG may prove to be a novel strategy for enhancing the efficacy of the two drug types.

LONG TERM GINSENG EFFECTS ON HYPERLIPIDEMIA IN MAN WITH FURTHER STUDY OF ITS ACTIONS ON ATHEROGENESIS AND FATTY LIVER IN RATS (사람의 과지혈증과 동맥경화 및 흰쥐 지방간에 미치는 인삼의 장기복용 효과 연구)

  • Yamamoto Masahiro;Kumagai Akira
    • Proceedings of the Ginseng society Conference
    • /
    • 1984.09a
    • /
    • pp.13-19
    • /
    • 1984
  • In the previous symposium, authors reported about anti-atherogenic action of Panax ginseng, saying that red-ginseng powder increased serum HDL-cholesterol, decreased total cholesterol, TG, NEFA, in addition, decreased platelet adhesiveness. Later, Toyama group including me. reported that ginsenosides esp. $Rb_2$ enhanced HDL and decreased LDL. Also Matsuyama group and Kinki Univ. group reported that ginsenosides $Rg_1,\;Rb_2,$ etc. inhibited platelet aggregation. This paper will be divided into two parts: Experimental and clinical Experimental study; Using a highcholesterol-cholic acid-fed rats, effects of red ginseng extract and several ginsenosides on serum apoprotein-lipoproteins in relation to prostaglandins. Rats received $2\%$ cholesterol 1-1$\%$ cholic acid diet, ginseng extract or ginsenosides 2.5mg/100g/day for 9 days. Red ginseng extract, ginsenosides $Rb_2,\;Rc,\;Rb_1,\;and\;Rg_1,\;esp.\;Rb_2,$ increased HDL, apo-AI, Aii and $PGI_2,$ while they decreased LDL, apo-B and $TXA_2$. Clinical study: Effect of red ginseng powder on hyperlipidemia was observed. Long term administration of red ginseng powder manufactured by Office of Monopoly, Republic of Korea and offered by Japan-Korea Korean Ginseng Co., Kobe, at the dose of 2.7 g/day, was performed in patients with hyperlipidemia up to 4 years. The significant increase in serum HDL-cholesterol and also the significant decrease in total cholesterol, atherogenic index, TG, NEFA and lipoperoxide was observed with 3-48 month administration of red ginseng. Conclusions: Red ginseng and ginsenosides improved hyperlipidemia in rats and in man, with the improvement of blood apoproteins, lipoproteins and prostaglandins in experimental hyperlipidemic animals.

  • PDF

Luminescence Properties of Ba3Si6O12N2:Eu2+ Green Phosphor

  • Luong, Van Duong;Doan, Dinh Phuong;Lee, Hong-Ro
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.5
    • /
    • pp.211-217
    • /
    • 2015
  • To fabricate white LED having a high color rendering index value, red color phosphor mixed with the green color phosphor together in the blue chip, namely the blue chips with RG phosphors packaging is most favorable for high power white LEDs. In our previous papers, we reported on successful syntheses of $Sr_{2-}$ $Si_5N_8:Eu^{2+}$ and $CaAlSiN_3$ phosphors for red phosphor. In this work, for high power green phosphor, greenemitting ternary nitride $Ba_3Si_6O_{12}N_2:Eu^{2+}$ phosphor was synthesized in a high frequency induction furnace under $N_2$ gas atmosphere at temperatures up to $1400^{\circ}C$ using $EuF_3$ as a raw material for $Eu^{2+}$ dopant. The effects of molar ratio of component and experimental conditions on luminescence property of prepared phosphors have been investigated. The structure and luminescence properties of prepared $Ba_3Si_6O_{12}N_2:Eu^{2+}$ phosphors were investigated by XRD and photoluminescence spectroscopy. The excitation spectra of $Ba_3Si_6O_{12}N_2:Eu^{2+}$ phosphors indicated broad excitation wavelength range of 250 - 500 nm, namely from UV to blue region with distinct enhanced emission spectrum peaking at ${\approx}530nm$.

Proposal of layer 2 event for seamless handover (심리스 핸드오버를 위한 L2 이벤트 제안)

  • Jang, Jong-Min;Kim, Dong-Il;Lee, Yu-Tae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.585-588
    • /
    • 2007
  • With several enhanced access technologies, users have many changes to select their preference access network. There are great differences between access technologies, users' need to handover from one access network to another is getting bigger. As users' need grows there are several works to archive fast handover between heterogeneous and homogeneous access networks. However traditional handover mechanisms work only on L2 or L3 have several limits that prevent fast and heterogeneous handover. To overcome those limits, IEEE 802.21 WG and IRTF MOBOPTS RG are working for developing handover mechanisms that uses L2 information on theupper layers like L3. This paper introduces two new L2 information and properties can be used to archive fast handover of mobile nodes.

  • PDF

Korean Red Ginseng alleviates dehydroepiandrosterone-induced polycystic ovarian syndrome in rats via its antiinflammatory and antioxidant activities

  • Choi, Jong Hee;Jang, Minhee;Kim, Eun-Jeong;Lee, Min Jung;Park, Kyoung Sun;Kim, Seung-Hyun;In, Jun-Gyo;Kwak, Yi-Seong;Park, Dae-Hun;Cho, Seung-Sik;Nah, Seung-Yeol;Cho, Ik-Hyun;Bae, Chun-Sik
    • Journal of Ginseng Research
    • /
    • v.44 no.6
    • /
    • pp.790-798
    • /
    • 2020
  • Background: Beneficial effects of Korean Red Ginseng (KRG) on polycystic ovarian syndrome (PCOS) remains unclear. Methods: We examined whether pretreatment (daily from 2 hours before PCOS induction) with KRG extract in water (KRGE; 75 and 150 mg/kg/day, p.o.) could exert a favorable effect in a dehydroepian-drosterone (DHEA)-induced PCOS rat model. Results: Pretreatment with KRGE significantly inhibited the elevation of body and ovary weights, the increase in number and size of ovarian cysts, and the elevation of serum testosterone and estradiol levels induced by DHEA. Pretreatment with KRGE also inhibited macrophage infiltration and enhanced mRNA expression levels of chemokines [interleukin (IL)-8, monocyte chemoattractant protein-1), proinflammatory cytokines (IL-1β, IL-6), and inducible nitric oxide synthase in ovaries induced by DHEA. It also prevented the reduction in mRNA expression of growth factors (epidermal growth factor, transforming growth factor-beta (EGF, TGF-β)) related to inhibition of the nuclear factor kappa-light-chain-enhancer of activated B cell pathway and stimulation of the nuclear factor erythroid-derived 2-related factor 2 pathway. Interestingly, KRGE or representative ginsenosides (Rb1, Rg1, and Rg3(s)) inhibited the activity of inflammatory enzymes cyclooxygenase-2 and iNOS, cytosolic p-IκB, and nuclear p-nuclear factor kappa-light-chain-enhancer of activated B in lipopolysaccharide-induced RAW264.7 cells, whereas they increased nuclear factor erythroid-derived 2-related factor 2 nuclear translocation. Conclusion: These results provide that KRGE could prevent DHEA-induced PCOS via antiinflammatory and antioxidant activities. Thus, KRGE may be used in preventive and therapeutic strategies for PCOS-like symptoms.

A Fermented Ginseng Extract, BST204, Inhibits Proliferation and Motility of Human Colon Cancer Cells

  • Park, Jong-Woo;Lee, Jae-Cheol;Ann, So-Ra;Seo, Dong-Wan;Choi, Wahn-Soo;Yoo, Young-Hyo;Park, Sun-Kyu;Choi, Jung-Young;Um, Sung-Hee;Ahn, Seong-Hoon;Han, Jeung-Whan
    • Biomolecules & Therapeutics
    • /
    • v.19 no.2
    • /
    • pp.211-217
    • /
    • 2011
  • Panax ginseng CA Meyer, a herb from the Araliaceae, has traditionally been used as a medicinal plant in Asian countries. Ginseng extract fermented by ginsenoside-${\beta}$-glucosidase treatment is enriched in ginsenosides such as Rh2 and Rg3. Here we show that a fermented ginseng extract, BST204, has anti-proliferative and anti-invasive effects on HT-29 human colon cancer cells. Treatment of HT-29 cells with BST204 induced cell cycle arrest at $G_1$ phase without progression to apoptosis. This cell cycle arrest was accompanied by up-regulation of tumor suppressor proteins, p53 and p21$^{WAF1/Cip1}$, down-regulation of the cyclin-dependent kinase/cyclins, Cdk2, cyclin E, and cyclin D1 involved in $G_1$ or $G_1/S$ transition, and decrease in the phosphorylated form of retinoblastoma protein. In addition, BST204 suppressed the migration of HT-29 cells induced by 12-O-tetradecanoylphorbol-13-acetate, which correlated with the inhibition of metalloproteinase-9 activity and extracellular signal-regulated kinase activity. The effects of BST204 on the proliferation and the invasiveness of HT-29 cells were similar to those of Rh2. Taken together, the results suggest that fermentation of ginseng extract with ginsenoside-${\beta}$-glucosidase enhanced the anti-proliferative and the anti-invasive activity against human colon cancer cells and these anti-tumor effects of BST204 might be mediated in part by enriched Rh2.

Major ginsenosides from Panax ginseng promote aerobic cellular respiration and SIRT1-mediated mitochondrial biosynthesis in cardiomyocytes and neurons

  • Huang, Qingxia;Lou, Tingting;Lu, Jing;Wang, Manying;Chen, Xuenan;Xue, Linyuan;Tang, Xiaolei;Qi, Wenxiu;Zhang, Zepeng;Su, Hang;Jin, Wenqi;Jing, Chenxu;Zhao, Daqing;Sun, Liwei;Li, Xiangyan
    • Journal of Ginseng Research
    • /
    • v.46 no.6
    • /
    • pp.759-770
    • /
    • 2022
  • Background: Aerobic cellular respiration provides chemical energy, adenosine triphosphate (ATP), to maintain multiple cellular functions. Sirtuin 1 (SIRT1) can deacetylate peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) to promote mitochondrial biosynthesis. Targeting energy metabolism is a potential strategy for the prevention and treatment of various diseases, such as cardiac and neurological disorders. Ginsenosides, one of the major bioactive constituents of Panax ginseng, have been extensively used due to their diverse beneficial effects on healthy subjects and patients with different diseases. However, the underlying molecular mechanisms of total ginsenosides (GS) on energy metabolism remain unclear. Methods: In this study, oxygen consumption rate, ATP production, mitochondrial biosynthesis, glucose metabolism, and SIRT1-PGC-1α pathways in untreated and GS-treated different cells, fly, and mouse models were investigated. Results: GS pretreatment enhanced mitochondrial respiration capacity and ATP production in aerobic respiration-dominated cardiomyocytes and neurons, and promoted tricarboxylic acid metabolism in cardiomyocytes. Moreover, GS clearly enhanced NAD+-dependent SIRT1 activation to increase mitochondrial biosynthesis in cardiomyocytes and neurons, which was completely abrogated by nicotinamide. Importantly, ginsenoside monomers, such as Rg1, Re, Rf, Rb1, Rc, Rh1, Rb2, and Rb3, were found to activate SIRT1 and promote energy metabolism. Conclusion: This study may provide new insights into the extensive application of ginseng for cardiac and neurological protection in healthy subjects and patients.

Immuno-stimulating and anti-metastatic activities of the polysaccharides isolated from Angelica gigas (참당귀로부터 분리한 다당의 면역증진 활성과 항전이 활성)

  • Son, Seung-U;Shin, Kwang-Soon
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.3
    • /
    • pp.304-312
    • /
    • 2021
  • The present study aimed to develop new physiologically active ingredients from Angelica gigas. The polysaccharides purified from A. gigas, AGE-2c-I, showed potent anti-complementary activity in a dose-dependent manner. C3 activation products were identified through crossed immuno-electrophoresis using anti-human C3 antibodies and the anti-complementary activity of AGE-2c-I under Ca++-free conditions suggests that AGE-2c-I may induce complementary activation via both alternative and classical pathways. In addition, AGE-2c-I augmented the production of various cytokines, such as interleukin (IL)-6, IL-10, IL-12, and tumor necrosis factor-α, by peritoneal macrophages. Furthermore, intravenous (i.v.) administration of AGE-2c-I dose-dependently enhanced natural killer cell cytotoxicity against YAC-1 lymphoma. In experimental lung metastasis, prophylactic i.v. administration of AGE-2c-I inhibited lung metastasis by 58% at 100 ㎍/mouse. From the above results, we suggest that AGE-2c-I purified from A. gigas has potent immune system-stimulating activities, and is a potentially promising food ingredient beneficial to human health.

Generation of a High-Growth Influenza Vaccine Strain in MDCK Cells for Vaccine Preparedness

  • Kim, Eun-Ha;Kwon, Hyeok-Il;Park, Su-Jin;Kim, Young-Il;Si, Young-Jae;Lee, In-Won;Kim, Se mi;Kim, Soo-In;Ahn, Dong-Ho;Choi, Young-Ki
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.6
    • /
    • pp.997-1006
    • /
    • 2018
  • As shown during the 2009 pandemic H1N1 (A(H1N1)pdm09) outbreak, egg-based influenza vaccine production technology is insufficient to meet global demands during an influenza pandemic. Therefore, there is a need to adapt cell culture-derived vaccine technology using suspended cell lines for more rapid and larger-scale vaccine production. In this study, we attempted to generate a high-growth influenza vaccine strain in MDCK cells using an A/Puerto/8/1934 (H1N1) vaccine seed strain. Following 48 serial passages with four rounds of virus plaque purification in MDCK cells, we were able to select several MDCK-adapted plaques that could grow over $10^8PFU/ml$. Genetic characterization revealed that these viruses mainly had amino acid substitutions in internal genes and exhibited higher polymerase activities. By using a series of Rg viruses, we demonstrated the essential residues of each gene and identified a set of high-growth strains in MDCK cells ($PB1_{D153N}$, $M1_{A137T}$, and $NS1_{N176S}$). In addition, we confirmed that in the context of the high-growth A/PR/8/34 backbone, A/California/7/2009 (H1N1), A/Perth/16/2009 (H3N2), and A/environment/Korea/deltaW150/2006 (H5N1) also showed significantly enhanced growth properties (more than $10^7PFU/ml$) in both attached- and suspended-MDCK cells compared with each representative virus and the original PR8 vaccine strain. Taken together, this study demonstrates the feasibility of a cell culture-derived approach to produce seed viruses for influenza vaccines that are cheap and can be grown promptly and vigorously as a substitute for egg-based vaccines. Thus, our results suggest that MDCK cell-based vaccine production is a feasible option for producing large-scale vaccines in case of pandemic outbreaks.