• 제목/요약/키워드: Enhanced Genetic Algorithm

검색결과 82건 처리시간 0.03초

개인화 된 추천시스템을 위한 사용자-상품 매트릭스 축약기법 (User-Item Matrix Reduction Technique for Personalized Recommender Systems)

  • 김경재;안현철
    • Journal of Information Technology Applications and Management
    • /
    • 제16권1호
    • /
    • pp.97-113
    • /
    • 2009
  • Collaborative filtering(CF) has been a very successful approach for building recommender system, but its widespread use has exposed to some well-known problems including sparsity and scalability problems. In order to mitigate these problems, we propose two novel models for improving the typical CF algorithm, whose names are ISCF(Item-Selected CF) and USCF(User-Selected CF). The modified models of the conventional CF method that condense the original dataset by reducing a dimension of items or users in the user-item matrix may improve the prediction accuracy as well as the efficiency of the conventional CF algorithm. As a tool to optimize the reduction of a user-item matrix, our study proposes genetic algorithms. We believe that our approach may relieve the sparsity and scalability problems. To validate the applicability of ISCF and USCF, we applied them to the MovieLens dataset. Experimental results showed that both the efficiency and the accuracy were enhanced in our proposed models.

  • PDF

Optimizing artificial neural network architectures for enhanced soil type classification

  • Yaren Aydin;Gebrail Bekdas;Umit Isikdag;Sinan Melih Nigdeli;Zong Woo Geem
    • Geomechanics and Engineering
    • /
    • 제37권3호
    • /
    • pp.263-277
    • /
    • 2024
  • Artificial Neural Networks (ANNs) are artificial learning algorithms that provide successful results in solving many machine learning problems such as classification, prediction, object detection, object segmentation, image and video classification. There is an increasing number of studies that use ANNs as a prediction tool in soil classification. The aim of this research was to understand the role of hyperparameter optimization in enhancing the accuracy of ANNs for soil type classification. The research results has shown that the hyperparameter optimization and hyperparamter optimized ANNs can be utilized as an efficient mechanism for increasing the estimation accuracy for this problem. It is observed that the developed hyperparameter tool (HyperNetExplorer) that is utilizing the Covariance Matrix Adaptation Evolution Strategy (CMAES), Genetic Algorithm (GA) and Jaya Algorithm (JA) optimization techniques can be successfully used for the discovery of hyperparameter optimized ANNs, which can accomplish soil classification with 100% accuracy.

진보된 유전자 알고리즘 이용하여 센서 네트워크의 에너지 소모를 최소화하는 클러스터링 기법 (A Clustering Technique to Minimize Energy Consumption of Sensor networks by using Enhanced Genetic Algorithm)

  • 서현식;오세진;이채우
    • 대한전자공학회논문지TC
    • /
    • 제46권2호
    • /
    • pp.27-37
    • /
    • 2009
  • 센서 네트워크를 구성하는 센서 노드들은 제한된 배터리 용량을 가지고 있으며 한번 배치되면 추가적인 에너지 공급이 어렵기 때문에 노드의 소비 전력을 최소화하기 위한 연구가 중요하다. 많은 연구 중 클러스터링 기법은 센서 네트워크에서 에너지 소비를 줄이기 위한 효과적인 기법중의 하나로 각광 받아왔다. 하지만, 클러스터링 기법은 클러스터의 수와 크기, 데이터전송에 참여하는 노드간의 거리등에 따라 에너지 절감 효과가 달라진다. 따라서 이러한 요인들을 최적화해야 클러스터링에 의한 에너지 절감 효과를 최대화할 수 있다. 본 연구에서는 확률적 최적해 탐색 기법인 유전자 알고리즘을 사용하여 센서 노드의 에너지 소비를 줄일 수 있는 최적의 클러스터를 찾는 것을 목적으로 한다. 유전자 알고리즘은 클러스터를 구성할 수 있는 수많은 경우의 수중에서 최적의 클러스터를 찾기 위해 진화의 과정을 거쳐 탐색을 수행한다. 따라서 진화 과정이 없는 LEACH와 같은 클러스터링 알고리즘보다 효과적일 수 있다. 본 연구에서 제안하는 2차원 염색체 유전자 알고리즘은 염색체내에 존재하는 각 노드에게 고유한 위치정보를 부여함으로써 기존 유전자 알고리즘보다 효율적인 유전자 진화를 수행할 수 있다. 그 결과, 센서 네트워크의 수명을 최대화 할 수 있는 최적의 클러스터를 빠르고 효과적으로 찾을 수 있다.

ESTIMATION OF DUCTILE FRACTURE BEHAVIOR INCORPORATING MATERIAL ANISOTROPY

  • Choi, Shin-Beom;Lee, Dock-Jin;Jeong, Jae-Uk;Chang, Yoon-Suk;Kim, Min-Chul;Lee, Bong-Sang
    • Nuclear Engineering and Technology
    • /
    • 제44권7호
    • /
    • pp.791-798
    • /
    • 2012
  • Since standardized fracture test specimens cannot be easily extracted from in-service components, several alternative fracture toughness test methods have been proposed to characterize the deformation and fracture resistance of materials. One of the more promising alternatives is the local approach employing the SP(Small Punch) testing technique. However, this process has several limitations such as a lack of anisotropic yield potential and tediousness in the damage parameter calibration process. The present paper investigates estimation of ductile fracture resistance(J-R) curve by FE(Finite Element) analyses using an anisotropic damage model and enhanced calibration procedure. In this context, specific tensile tests to quantify plastic strain ratios were carried out and SP test data were obtained from the previous research. Also, damage parameters constituting the Gurson-Tvergaard-Needleman model in conjunction with Hill's 48 yield criterion were calibrated for a typical nuclear reactor material through a genetic algorithm. Finally, the J-R curve of a standard compact tension specimen was predicted by further detailed FE analyses employing the calibrated damage parameters. It showed a lower fracture resistance of the specimen material than that based on the isotropic yield criterion. Therefore, a more realistic J-R curve of a reactor material can be obtained effectively from the proposed methodology by taking into account a reduced load-carrying capacity due to anisotropy.

하천구조 개선에 따른 어류 서식적합도와 물리적 교란의 상관분석 (A Correlation Analysis between Physical Disturbance and Fish Habitat Suitability before and after Channel Structure Rehabilitation)

  • 최흥식;이웅희
    • Ecology and Resilient Infrastructure
    • /
    • 제2권1호
    • /
    • pp.33-41
    • /
    • 2015
  • 본 연구는 어류서식적합도 향상을 위해 유전자알고리즘을 이용한 하천의 구조개선 방안을 제시하였다. 하천구조 개선에 의한 수리특성의 변화에 따른 어류 서식적합도와 물리적 교란양상과의 상관특성을 분석하였다. 원주천의 하천 환경조사와 어류의 군집특성을 이용하여 수중 생태계를 대표할 수 있는 복원 목표어종으로 참갈겨니를 선택하였다. 참갈겨니의 서식적합지수를 사용한 서식적합도 분석은 PHABSIM 모형을 이용하였다. HEC-RAS를 이용한 수리특성 분석과 하천교란 평가방법을 이용하여 물리적 교란평가를 수행하였다. 서식적합도 향상을 위한 최적의 저수로 폭의 개선방안을 제시하였다. 하천구조의 개선에 의한 수리특성의 변화에 따른 서식적합도와 물리적 교란의 상관성을 분석하여 어류 서식적합도와 물리적 교란 평가점수의 향상이 있음을 확인하였다. 서식적합도 향상을 위한 하천의 구조 개선은 물리적 교란의 평가점수의 향상을 가져옴을 확인하였다.

분류규칙과 강화 역전파 신경망을 이용한 이종 인공유기체의 공진화 (A Coevolution of Artificial-Organism Using Classification Rule And Enhanced Backpropagation Neural Network)

  • 조남덕;김기태
    • 정보처리학회논문지B
    • /
    • 제12B권3호
    • /
    • pp.349-356
    • /
    • 2005
  • 동적이고 비정형적인 환경에서 작업을 수행하기 위해 인공유기체를 이용하는 응용 분야가 빠른 속도로 확대되고 있다. 이러한 분야에서 인공유기체의 행동 지식 표현법으로 일반적인 프로그래밍 또는 전통적인 인공지능 방법을 사용하면, 예측치 못한 상황으로 인한 빈번한 변경과 나쁜 응답성의 문제가 발생한다. 이들 문제들을 기계학습적으로 해결하기 위한 방법으로는 유전자 프로그래밍과 진화 신경망이 대표적이다. 그러나 아직까지도 인공유기체의 학습방법이 문제가 되고 있으며, 같은 환경 속에 서식하는 인공유기체의 종이 같아서 여러생명체를 대표할수 없는 문제점이 있다. 본 논문에서는 학습의 속도와 질을 향상시키기 위해 강화역전파 신경망과 분류규칙을 이용하였으며, 한 환경속에 서식하는 인공유기체의 종을 달리하였다. 제안된 모델을 평가하기 위해서 이종간 인공유기체 집단이 한 가상환경속에서 서로 경쟁하면서 생활하는 시뮬레이터를 설계 및 구현하였고, 그들의 행동진화를 수행결과로 보여주었으며, 타시스템과의 비교분석을 하였다. 결과적으로, 학습의 속도와 질적인 면에서 제안된 모델이 모두 우수한 것을 확인하였다. 본 모델의 특징으로는, 유전자 알고리즘에 의해서 염색체에 표현된 분류 규칙들과 신경망의 학습이 동시에 수행되며, 분류 규칙과 강화역전파 신경망의 2단계의 처리 과정으로 인하여 학습 능력이 강화된다는 점이다.

Robust optimization of a hybrid control system for wind-exposed tall buildings with uncertain mass distribution

  • Venanzi, Ilaria;Materazzi, Annibale Luigi
    • Smart Structures and Systems
    • /
    • 제12권6호
    • /
    • pp.641-659
    • /
    • 2013
  • In this paper is studied the influence of the uncertain mass distribution over the floors on the choice of the optimal parameters of a hybrid control system for tall buildings subjected to wind load. In particular, an optimization procedure is developed for the robust design of a hybrid control system that is based on an enhanced Monte Carlo simulation technique and the genetic algorithm. The large computational effort inherent in the use of a MC-based procedure is reduced by the employment of the Latin Hypercube Sampling. With reference to a tall building modeled as a multi degrees of freedom system, several numerical analyses are carried out varying the parameters influencing the floors' masses, like the coefficient of variation of the distribution and the correlation between the floors' masses. The procedure allows to obtain optimal designs of the control system that are robust with respect to the uncertainties on the distribution of the dead and live loads.

신경망을 이용한 전하밀도의 예측과 해석 (Prediction and Analysis of Charge Density Using Neural Network)

  • 권상희;황보광;이규상;우형수;김병환
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.111-112
    • /
    • 2007
  • Silicon nitride (SiN) 박막을 플라즈마 응용화학기상법을 이용하여 증착하였다. SiN박막의 전하밀도는 일반화된 회귀 신경망과 유전자 알고리즘을 이용하여 모델링하였다. PECVD 공정은 Box Wilson 실험계획표를 이용하여 수행하였다. $SiH_4$ 유량변화에 따른 온도의 영향은 미미하였다. 그러나, 저 전력에서의 온도증가 (또는 저온에서의 전력의 증가)에 따라 전하밀도는 급격히 상승하였으며, 이는 [N-H]의 증가에 기인하는 것으로 해석되었다. $SiH_4$ 유량의 증가 (또는 고온에서의 전력의 증가)에 따라 전하밀도는 감소하고 있으며, 이는 [Si-H]의 증가에 기인하는 것으로 이해된다.

  • PDF

여러가지 뉴럴네트웍 기법을 적용한 부분방전 패턴인식 비교 (Comparison of Various Neural Network Methods for Partial Discharge Pattern Recognition)

  • 최원;김정태;이전선;김정윤
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.1422-1423
    • /
    • 2007
  • This study deals with various neural network algorithms for the on-site partial discharge pattern recognition. For the purpose, the pattern recognition has been carried out on partial discharge data for the typical artificial defect using 9 different neural network models. In order to enhance on-site applicability, artificial defects were installed in the insulation joint box of extra-high voltage xLPE cables and partial discharges were measured by use of the metal foil sensor and a HFCT as a sensor. As the result, it is found out that the accuracy of pattern recognition could be enhanced through the application of the Sigmoid function, the Momentum algorithm and the Genetic algorism on the artificial neural networks. Although Multilayer Perceptron (MLP) algorism showed the best result among 9 neural network algorisms, it is thought that more researches on others would be needed in consideration of on-site application.

  • PDF

Swell Correction of Shallow Marine Seismic Reflection Data Using Genetic Algorithms

  • park, Sung-Hoon;Kong, Young-Sae;Kim, Hee-Joon;Lee, Byung-Gul
    • Journal of the korean society of oceanography
    • /
    • 제32권4호
    • /
    • pp.163-170
    • /
    • 1997
  • Some CMP gathers acquired from shallow marine seismic reflection survey in offshore Korea do not show the hyperbolic trend of moveout. It originated from so-called swell effect of source and streamer, which are towed under rough sea surface during the data acquisition. The observed time deviations of NMO-corrected traces can be entirely ascribed to the swell effect. To correct these time deviations, a residual statics is introduced using Genetic Algorithms (GA) into the swell correction. A new class of global optimization methods known as GA has recently been developed in the field of Artificial Intelligence and has a resemblance with the genetic evolution of biological systems. The basic idea in using GA as an optimization method is to represent a population of possible solutions or models in a chromosome-type encoding and manipulate these encoded models through simulated reproduction, crossover and mutation. GA parameters used in this paper are as follows: population size Q=40, probability of multiple-point crossover P$_c$=0.6, linear relationship of mutation probability P$_m$ from 0.002 to 0.004, and gray code representation are adopted. The number of the model participating in tournament selection (nt) is 3, and the number of expected copies desired for the best population member in the scaling of fitness is 1.5. With above parameters, an optimization run was iterated for 101 generations. The combination of above parameters are found to be optimal for the convergence of the algorithm. The resulting reflection events in every NMO-corrected CMP gather show good alignment and enhanced quality stack section.

  • PDF