• 제목/요약/키워드: English learning software

검색결과 53건 처리시간 0.025초

이차함수와 타원의 문제해결 지도를 위한 멀티미디어 학습자료 개발 (Development of Instructional Models for Problem Solving in Quadratic Functions and Ellipses)

  • 김인수;고상숙;박승재;김영진
    • 대한수학교육학회지:수학교육학연구
    • /
    • 제8권1호
    • /
    • pp.59-71
    • /
    • 1998
  • Recently, most classrooms in Korea are fully equipped with multimedia environments such as a powerful pentium pc, a 43″large sized TV, and so on through the third renovation of classroom environments. However, there is not much software teachers can use directly in their teaching. Even with existing software such as GSP, and Mathematica, it turns out that it doesn####t fit well in a large number of students in classrooms and with all written in English. The study is to analyze the characteristics of problem-solving process and to develop a computer program which integrates the instruction of problem solving into a regular math program in areas of quadratic functions and ellipses. Problem Solving in this study included two sessions: 1) Learning of basic facts, concepts, and principles; 2) problem solving with problem contexts. In the former, the program was constructed based on the definitions of concepts so that students can explore, conjecture, and discover such mathematical ideas as basic facts, concepts, and principles. In the latter, the Polya#s 4 phases of problem-solving process contributed to designing of the program. In understanding of a problem, the program enhanced students#### understanding with multiple, dynamic representations of the problem using visualization. The strategies used in making a plan were collecting data, using pictures, inductive, and deductive reasoning, and creative reasoning to develop abstract thinking. In carrying out the plan, students can solve the problem according to their strategies they planned in the previous phase. In looking back, the program is very useful to provide students an opportunity to reflect problem-solving process, generalize their solution and create a new in-depth problem. This program was well matched with the dynamic and oscillation Polya#s problem-solving process. Moreover, students can facilitate their motivation to solve a problem with dynamic, multiple representations of the problem and become a powerful problem solve with confidence within an interactive computer environment. As a follow-up study, it is recommended to research the effect of the program in classrooms.

  • PDF

초등학생 대상 한국어 기반 Python 교육용 프로그램 개발 방안 (Development Plan of Python Education Program for Korean Speaking Elementary Students)

  • 박기령;박소희;김준서;구덕회
    • 한국정보교육학회:학술대회논문집
    • /
    • 한국정보교육학회 2021년도 학술논문집
    • /
    • pp.141-148
    • /
    • 2021
  • 초등학생을 대상으로 하는 소프트웨어 교육에는 주로 교육용 프로그래밍 언어가 사용된다. 고학년 수준에서는 블록형 교육용 프로그래밍 언어를 기반으로 텍스트 기반 프로그래밍 언어로 전환하고, 경험하는 것이 중요하다. 그러나 대부분의 TPL은 어려운 영어 어휘와 문법으로 이루어져 있어 초등 수준에서 학습하기에 어려움이 있다. 대표적인 텍스트 기반 프로그래밍 언어로는 Python이 있다. 본 연구는 한국어가 익숙한 학생들이 Python을 용이하게 학습할 수 있는 교육 프로그램의 개발에 관한 것이다. 데이터 분석에 필요한 개념을 중심으로 Python 예약어를 추출하였다. 데이터 분석에 사용되는 영어 예약어들을 초등 수준에서 이해할 수 있는 한국어로 대체하였다. 대체한 예약어와 Python 예약어를 일대일 매핑하여 한국어를 사용하여 Python 데이터 분석 과정을 체험해 볼 수 있는 프로그램을 구상하였다. 본 연구가 TPL을 학습하기 위한 기초 자료로 유용하게 활용되길 기대한다.

  • PDF

문장에 포함된 외국어의 자연스러운 발음 표현을 위한 LSTM 방법 (An LSTM Method for Natural Pronunciation Expression of Foreign Words in Sentences)

  • 김성돈;정재희
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제8권4호
    • /
    • pp.163-170
    • /
    • 2019
  • 한국어는 "을/를/이/가/와/과"와 같은 조사가 체언에 붙어 문장의 의미를 더해준다. 문장 중에 외국어 표기를 그대로 사용하는 경우나 외국어의 약자가 포함되어 있는 경우, 외국어의 발음에 따른 적절한 조사가 연결되지 않는 경우가 있다. 때로는 문장의 자연스러운 표현을 위하여 "을(를)"과 같이 괄호 형식으로 표현하여 조사를 두 개 다 수용 가능한 형태로 사용되어지기도 한다. 본 연구에서는 문장 내에 외국어가 포함되어 있는 경우, 조사가 부자연스럽게 연결되는 예를 찾고 체언의 종성 발음을 학습하여 자연스러운 조사 연결을 위한 방법을 알아보고자 한다. 제안하는 방법은 순환신경망 모델을 이용하여 외국어에 연결된 조사를 자연스럽게 표현하는 것이다. 제안된 모델로 학습 및 테스트하여 방법의 필요성을 입증함으로써, 향후 기계 번역에서 영문 약자나 새로운 외국어 삽입 시 자연스러운 조사 연결로 완전한 문장을 연결하는데 사용될 수 있을 것으로 기대한다.

기계학습 분류기의 예측확률과 만장일치를 이용한 한국어 서답형 문항 자동채점 시스템 (Automated Scoring System for Korean Short-Answer Questions Using Predictability and Unanimity)

  • 천민아;김창현;김재훈;노은희;성경희;송미영
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제5권11호
    • /
    • pp.527-534
    • /
    • 2016
  • 최근 정보화 사회에서는 단순 암기보다는 문제 해결 능력과 종합적인 사고력을 바탕으로 창의적인 생각을 할 수 있는 인재를 요구한다. 이에 따라 교육과정도 학생들의 종합적인 사고력을 판단할 수 있는 서답형 문항을 늘리는 방향으로 변하고 있다. 그러나 서답형 문항의 경우 채점자의 주관에 의존하여 채점이 진행되기 때문에, 채점 결과의 일관성을 확보하기 어렵다는 단점이 있다. 이런 점을 해결하기 위해 해외에서는 기계학습을 이용한 자동채점 시스템을 채점 도구로 사용하고 있다. 한국어는 영어와 언어학적으로 다른 분류에 속하므로 영어권에서 사용하는 자동채점 시스템을 한국어에 그대로 적용할 수 없다. 따라서 한국어 체계에 맞는 자동채점 시스템의 개발이 필요하다. 본 논문에서는 기계학습 분류기의 예측확률과 만장일치 방법을 사용한 한국어 서답형 문항 자동채점 시스템을 소개하고, 자동채점 시스템을 이용한 채점 결과와 교과 전문가의 채점 결과를 비교하여 자동채점 시스템의 실용성을 검증한다. 본 논문의 실험을 위해 2014년 국가수준 학업성취도 평가의 국어, 사회, 과학 교과의 서답형 문항을 사용했다. 평가 척도로 피어슨 상관계수와 카파계수를 사용했다. 채점자가 개입했을 때와 개입하지 않았을 때의 상관계수 모두 0.7 이상으로 강한 양의 상관관계를 보였다. 이는 자동채점 시스템이 교과 전문가가 채점한 결과와 유사한 방향으로 답안에 점수를 부여한 것이므로 자동채점 시스템을 채점 보조도구로서 충분히 사용할 수 있을 것이다.

확률적 교차 연산을 이용한 보편적 관계 추출 (General Relation Extraction Using Probabilistic Crossover)

  • 이제승;김재훈
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제12권8호
    • /
    • pp.371-380
    • /
    • 2023
  • 관계 추출은 텍스트로부터 개체(named entity) 사이의 관계를 추출하는 과정이다. 전통적으로 관계 추출 방법은 주어와 목적어가 미리 정해진 상태에서 관계만 추출한다. 그러나 종단형 관계 추출에서는 개체 쌍마다 주어와 목적어의 위치를 고려하여 가능한 모든 관계를 추출해야 하므로 이 방법은 시간과 자원을 비효율적으로 사용한다. 본 논문에서는 이러한 문제를 완화하기 위해 문장에서 주어와 목적어의 위치에 따른 방향을 설정하고, 정해진 방향에 따라 관계를 추출하는 방법을 제안한다. 제안하는 방법은 기존의 관계 추출 데이터를 활용하여 문장에서 주어가 목적어를 가리키는 방향을 나타내는 방향 표지를 새롭게 생성하고, 개체 위치 토큰과 개체 유형 정보를 문장에 추가하는 작업을 통해 사전학습 언어모델 (KLUE-RoBERTa-base, RoBERTa-base)을 이용하여 방향을 예측한다. 그리고 확률적 교차 연산을 통해 주어와 목적어 개체의 표상을 생성한다. 이후 이러한 개체의 표상을 활용하여 관계를 추출한다. 실험 결과를 통해, 제안 모델이 하나로 통합된 라벨을 예측하는 것보다 3 ~ 4%p 정도 더 우수한 성능을 보여주었다. 또한, 제안 모델을 이용해 한국어 데이터와 영어 데이터를 학습할 때, 데이터 수와 언어적 차이로 인해 한국어보다 영어에서 1.7%p 정도 더 높은 성능을 보여주었고, 최상의 성능을 내는 매개변수의 값이 다르게 나타나는 부분도 관찰할 수 있었다. 제안 모델은 방향에 따른 경우의 수를 제외함으로써 종단형 관계 추출에서 자원의 낭비를 줄일 수 있다.

Bi-LSTM 기반의 한국어 감성사전 구축 방안 (KNU Korean Sentiment Lexicon: Bi-LSTM-based Method for Building a Korean Sentiment Lexicon)

  • 박상민;나철원;최민성;이다희;온병원
    • 지능정보연구
    • /
    • 제24권4호
    • /
    • pp.219-240
    • /
    • 2018
  • 감성사전은 감성 어휘에 대한 사전으로 감성 분석(Sentiment Analysis)을 위한 기초 자료로 활용된다. 이와 같은 감성사전을 구성하는 감성 어휘는 특정 도메인에 따라 감성의 종류나 정도가 달라질 수 있다. 예를 들면, '슬프다'라는 감성 어휘는 일반적으로 부정의 의미를 나타내지만 영화 도메인에 적용되었을 경우 부정의 의미를 나타내지 않는다. 그렇기 때문에 정확한 감성 분석을 수행하기 위해서는 특정 도메인에 알맞은 감성사전을 구축하는 것이 중요하다. 최근 특정 도메인에 알맞은 감성사전을 구축하기 위해 범용 감성 사전인 오픈한글, SentiWordNet 등을 활용한 연구가 진행되어 왔으나 오픈한글은 현재 서비스가 종료되어 활용이 불가능하며, SentiWordNet은 번역 간에 한국 감성 어휘들의 특징이 잘 반영되지 않는다는 문제점으로 인해 특정 도메인의 감성사전 구축을 위한 기초 자료로써 제약이 존재한다. 이 논문에서는 기존의 범용 감성사전의 문제점을 해결하기 위해 한국어 기반의 새로운 범용 감성사전을 구축하고 이를 KNU 한국어 감성사전이라 명명한다. KNU 한국어 감성사전은 표준국어대사전의 뜻풀이의 감성을 Bi-LSTM을 활용하여 89.45%의 정확도로 분류하였으며 긍정으로 분류된 뜻풀이에서는 긍정에 대한 감성 어휘를, 부정으로 분류된 뜻풀이에서는 부정에 대한 감성 어휘를 1-gram, 2-gram, 어구 그리고 문형 등 다양한 형태로 추출한다. 또한 다양한 외부 소스(SentiWordNet, SenticNet, 감정동사, 감성사전0603)를 활용하여 감성 어휘를 확장하였으며 온라인 텍스트 데이터에서 사용되는 신조어, 이모티콘에 대한 감성 어휘도 포함하고 있다. 이 논문에서 구축한 KNU 한국어 감성사전은 특정 도메인에 영향을 받지 않는 14,843개의 감성 어휘로 구성되어 있으며 특정 도메인에 대한 감성사전을 효율적이고 빠르게 구축하기 위한 기초 자료로 활용될 수 있다. 또한 딥러닝의 성능을 높이기 위한 입력 자질로써 활용될 수 있으며, 기본적인 감성 분석의 수행이나 기계 학습을 위한 대량의 학습 데이터 세트를 빠르게 구축에 활용될 수 있다.

CUDA 연산을 이용한 개선된 영상 매칭 방법에 관한 연구 (A Study on Improved Image Matching Method using the CUDA Computing)

  • 조경래;박병준;윤태복
    • 한국산학기술학회논문지
    • /
    • 제16권4호
    • /
    • pp.2749-2756
    • /
    • 2015
  • 최근 데이터의 질이 높아짐에 따라 영상을 처리하는데 많은 시간이 소모되는 문제가 제기되어 영상 처리 알고리즘의 가속화가 필요하게 됨으로써, 기존의 CPU와 CUDA(Compute Unified Device Architecture) 기반의 인식 시스템에서 연산속도와 성능이득 비교를 위해 OpenMP를 가지고 측정할 수 있는 문자 인식시스템으로 학습된 문자데이터가 입력되면 매칭이 가장 잘 되는 영상의 영역을 인식하는 환경으로 구현하여 각 영문 알파벳의 글씨체가 일정하고 크기가 규격화 되어 있으므로 문자를 학습하고 문자 정합도를 계산하기 위한 영상 매칭 방법을 구현하게 되었다. GPGPU(General Purpose GPU)프로그래밍 플랫폼 기술인 CUDA연산 기법을 이용하여 알고리즘을 빠르고 효율적으로 처리하는 OpenMP에서 인텔 i5 2500의 네 개의 코어를 사용하여 인식 할 때, 기존 CPU의 성능보다 4배의 속도가 나오지 않고 데이터의 분할과 병합 연산의 지연으로 인해 약 3.2배의 속도로 향상되는 가속화 방법을 제안하고 그래픽카드에서 처리하는 병렬처리 결과, 순차적 연산을 수행하였던 CPU 기반의 처리에 비해 성능이득이 약 21X(배)로 향상됨을 확인하였다.

문장구조 유사도와 단어 유사도를 이용한 클러스터링 기반의 통계기계번역 (Clustering-based Statistical Machine Translation Using Syntactic Structure and Word Similarity)

  • 김한경;나휘동;이금희;이종혁
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제37권4호
    • /
    • pp.297-304
    • /
    • 2010
  • 통계기계번역에서 번역성능의 향상을 위해서 문장의 유형이나 장르에 따라 클러스터링을 수행하여 도메인에 특화된 번역을 시도하는 방법이 있다. 그러나 기존의 연구 중 문장의 유형 정보와 장르에 따른 정보를 동시에 사용한 경우는 없었다. 본 논문에서는 각 문장의 문법적 구조 유사도에 따른 유형별분류 기법과, 단어 유사도 정보를 사용한 장르 구분법을 적용하여 기존의 두 기법을 통합하였다. 이렇게 분류된 말뭉치에서 추출한 도메인 특화 모델과 전체 말뭉치에서 추출된 모델에서 보간법(interpolation)을 사용하여 통계기계번역의 성능을 향상하였다. 문장구조 유사도와 단어 유사도의 계산 방법으로는 각각 커널과 코사인 유사도를 적용하였으며, 두 유사도를 적용하여 말뭉치를 분류하는 과정에서는 K-Means 알고리즘과 유사한 기계학습 기법을 사용하였다. 이를 일본어-영어의 특허문서에서 실험한 결과 최선의 경우 약 2.5%의 상대적인 성능 향상을 얻었다.

한국어판 프리셉터 교육행동 평가도구의 타당도와 신뢰도 검증 (Validity and Reliability of the Clinical Teaching Behavior Inventory (CTBI) for Nurse Preceptors in Korea)

  • 정면숙;김은경;김세영;김종경;유선주
    • 대한간호학회지
    • /
    • 제49권5호
    • /
    • pp.526-537
    • /
    • 2019
  • Purpose: The aim of this study was to evaluate the validity and reliability of the Korean version of the Clinical Teaching Behavior Inventory (CTBI). Methods: The English CTBI-23 was translated into Korean with forward and backward translation. Survey data were collected from 280 nurses' preceptors at five acute-care hospitals in Korea. Content validity, construct validity, and criterion-related validity were evaluated. Cronbach's ${\alpha}$ was used to assess reliability. SPSS 24.0 and AMOS 22.0 software was used for data analysis. Results: The CTBI Korean version consists of 22 items in six domains, including being committed to teaching, building a learning atmosphere, using appropriate teaching strategies, guiding inter-professional communication, providing feedback and evaluation, and showing concern and support. One of the items in the CTBI was excluded with a standardized factor loading of less than .05. The confirmatory factor analysis supported good fit and reliable scores for the Korean version of the CTBI model. A six-factor structure was validated ($x^2=366.30$, p<.001, CMIN/df=2.0, RMSEA=.06, RMR=.03, SRMR=.05, GFI=.90, IFI=.94, TLI=.92, CFI=.94). The criterion validity of the core competency evaluation tool for preceptors was .77 (p<.001). The Cronbach's ${\alpha}$ for the overall scale was .93, and the six subscales ranged from .72 to .85. Conclusion: The Korean version CTBI-22 is a valid and reliable instrument for identifying the clinical teaching behaviors of preceptors in Korea. The CTBI-22 also could be used as a guide for the effective teaching behavior of preceptors, which can help new nurses adapt to the practicalities of nursing.

텍스트 마이닝을 활용한 연구 동향 분석 (Analysis of Research Trends Using Text Mining)

  • 심재권
    • 창의정보문화연구
    • /
    • 제6권1호
    • /
    • pp.23-30
    • /
    • 2020
  • 본 논문은 융복합 논문지인 창의정보문화연구의 연구 동향을 분석하기 위한 목적으로 텍스트 마이닝 방법을 활용하였다. 기존의 연구동향 분석방법은 전통적인 내용분석 방법을 사용하여 연구자 개인의 성향이 반영되는 한계가 있었다. 따라서, 기존 연구 동향 분석의 한계를 보완하고자 본 논문에서는 토픽 모델링 기법을 사용하였고, 창의정보문화연구 논문지의 2015년에서 2019년까지 발간된 논문 전체의 영문초록을 분석하였다. 분석 결과, 가장 많이 등장한 단어는 "education"이었고, 8개의 연구 주제가 도출되었다. 도출된 주제는 교육대상, 교육평가, 학습자역량, 소프트웨어와 메이커 문화, 정보교육과 컴퓨터교육, 미래교육, 창의성, 교수학습방법으로 분석되었다. 본 논문의 텍스트 마이닝을 활용하여 융복합연구 논문지의 연구동향을 분석하였다는 점에서 의의가 있다고 할 수 있다.