• Title/Summary/Keyword: Engineering process

Search Result 46,006, Processing Time 0.064 seconds

Rheological perspectives of industrial coating process

  • Kim, Sun-Hyung;Kim, Jae-Hong;Ahn, Kyung-Hyun;Lee, Seung-Jong
    • Korea-Australia Rheology Journal
    • /
    • v.21 no.2
    • /
    • pp.83-89
    • /
    • 2009
  • Coating process plays an important role in information technology such as display, battery, chip manufacturing and so on. However, due to complexity of coating material and fast deformation of the coating flow, the process is hard to control and it is difficult to maintain the desired quality of the products. Moreover, it is hard to measure the coating process because of severe processing conditions such as high drying temperature, high deformation coating flow, and sensitivity to the processing variables etc. In this article, the coating process is to be re-illuminated from the rheological perspectives. The practical approach to analyze and quantify the coating process is discussed with respect to coating materials, coating flow and drying process. The ideas on the rheology control of coating materials, pressure and wet thickness control in patch coating process, and stress measurement during drying process will be discussed.

Chemical Strengthening Involving Outward Diffusion Process of Na+ Ion in Iron-containing Soda-lime Silicate Glass

  • Choi, Hyun-Bin;Kang, Eun-Tae
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.2
    • /
    • pp.133-136
    • /
    • 2015
  • The outward diffusion of $Na^+$ ions in iron-bearing soda lime silicate glass via oxidation heat treatment before the ion exchange process is artificially induced in order to increase the amount of ions exchanged during the ion exchange process. The effect of the addition process is analyzed through measuring the bending strength, the weight change, and the inter-diffusion coefficient after the ion exchange process. The glass strength is increased when the outward diffusion of $Na^+$ ions via oxidation heat treatment before the ion exchange process is added. For the glass subjected to the additional process, the weight change and diffusion depth increase compared with the glass not subjected to the process. The interdiffusion coefficient is also slightly increased as a result of the additional process.

Automatic Train Control (ATC) System Development through Application of Reverse and Re-Systems Engineering Process (역공학 및 재공학 시스템엔지니어링 프로세스 적용을 통한 무인열차자동제어시스템 개발)

  • 이중윤;박영원
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.10
    • /
    • pp.836-843
    • /
    • 2003
  • The automatic train control (ATC) system development project for the Automated Guideway Transit (AGT) system has high technical risk because the system is unmanned train control system using wireless technology which was unprecedented in train control industry of Korea. To overcome the technical risk during concept design phase of the ATC system development project, the integrated product team(IPT) carried out a reverse and reengineering process using a systems engineering design model. The generic systems engineering process is incorporated in the both reverse and reengineering process. As a result of the systems engineering effort, the IPT has built top layer systems engineering design model of the ATC subsystem. The purpose of this paper is to deliver the reverse and reengineering process which was used to develop the systems engineering design model of ATC system using a computer aided systems engineering tool. This study also shows that the model based reverse and reengineering process can reduce the technical risk by identifying the differences of requirement, functional and physical architecture between a reference system and a target system.

A study on the surface grinding machining of Engineering ceramics using "In-process dressing" method (연속 드레싱 공정을 이용한 엔지니어링 세라믹스의 평면 연삭 가공에 관한 연구)

  • Kang, Jae-hoon;Heo, Seoung-jung;Kim, Won-il
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.2
    • /
    • pp.178-189
    • /
    • 1993
  • Engineering ceramics have some excellent properties as the material for the mechanical components. It is, however, very difficult to grind ceramics with high efficiency because of their high strength, hardness and brittleness. In this paper experiments are carried out to obtain the effect of "In-process dressing" to grind the Engineering ceramics with high efficiency. To save running time for dressing process and obtain restraint effect of diamond grain wear, "In-process dressing" system usint WA stick type honing stone is proposed. Representative High Strength Engineering ceramics A1$_{2}$O$_{3}$ and Si$_{3}$N$_{4}$are ground with diamond wheel. Also bending strengrh test is carried out to check upward tendancy of mecahnical properties as the result of machining defact restraint through the grinding maching method using "In-process dressing" process. Some results obtained in this study provide useful information to attain the high efficency grinding and the high mechanical properties of Engineering ceramics.rties of Engineering ceramics.

  • PDF

Development of Expected Loss Capability Index Considering Economic Loss (경제적 손실을 고려한 기대손실 능력지수의 개발)

  • Kim, Dong-Hyuk;Park, Hyung-Geun;Chung, Young-Bae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.36 no.4
    • /
    • pp.109-115
    • /
    • 2013
  • Process Capability Index (PCI) is useful Statistical Process Control (SPC) tool that is measure of process diagnostic and assessment tools widely use in industrial field. It has advantage of easy to calculate and easy to use in the field. $C_p$ and $C_{pk}$ are traditional PCIs. These are only considers of process variation. These are not given information about the characteristic value does not match the target value of the process. Studies of this process capability index by many scholars actively for supplement of its disadvantage. These studies to evaluate the capability of situation of various field has presented a new process capability index. $C_{pm}$ is considers both the process variation and the process deviation from target value. And $C_{pm}{^+}$ is considers economic loss for the process deviation from target value. In this paper development of new process capability index that is Taguchi's quadratic loss function by applying the expected loss. And check the correlation between existing traditional process capability index ($C_{pk}$) and new one. Finally, we propose the criteria for classification about developed process capability index.

Comparison Analysis of Multivariate Process Capability Indices (다변량 공정능력지수들의 비교분석)

  • Moon, Hye-Jin;Chung, Young-Bae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.42 no.1
    • /
    • pp.106-114
    • /
    • 2019
  • Recently, the manufacturing process system in the industrial field has become more and more complex and has been influenced by many and various factors. Moreover, these factors have the dependent correlation rather than independent of each other. Therefore, the statistical analysis has been extended from the univariate method to the multivariate method. The process capability indices have been widely used as statistical tools to assess the manufacturing process performance. Especially, the multivariate process indices need to be enhanced with more useful information and extensive application in the recent industrial fields. The various multivariate process capability indices have been studying by many researchers in recent years. Hence, the purpose of the study is to compare the useful and various multivariate process capability indices through the simulation. Among them, we compare the useful models of several multivariate process capability indices such as $MC_{pm}$, $MC^+_{pm}$ and $MC_{pl}$. These multivariate process capability indices are incorporates both the process variation and the process deviation from target or consider the expected loss caused by the process deviation from target. Through the computational examples, we compare these process capability indices and discuss their usefulness and effectiveness.

A Multivariate Process Capability Index using Expected Loss (기대손실을 이용한 다변량 공정능력지수)

  • Chung, Young-Bae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.28 no.4
    • /
    • pp.116-123
    • /
    • 2005
  • The traditional process capability indices Cp, Cpk, Cpm, $Cpm^+$ have been used to characterize process performance on the basis of univariate quality characteristics. Cp, Cpk consider the process variation, Cpm considers both the process variation and the process deviation from target and Cpm+ considers economic loss for the process deviation from target. In manufacturing industry, there is growing interest in quantitative measures of process variation under multivariate duality characteristics. The multivariate process capability index incorporates both the process variation and the process deviation from target or considers expected loss caused by the process deviation from target. This paper proposes multivariate capability index based on the expected loss derived from multivariate normal distribution.