• Title/Summary/Keyword: Engineering critical current density

Search Result 186, Processing Time 0.029 seconds

Effect of Powder Preheating Temperature on the Properties of Cu based Amorphous Coatings by Cold Spray Deposition (저온분사로 제조된 Cu계 비정질 코팅층 특성에 미치는 분말 예열 온도의 영향)

  • Cho, Jin-Hyeon;Park, Dong-Yong;Lee, Jin-Kyu;Lee, Kee-Ahn
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.11
    • /
    • pp.728-733
    • /
    • 2009
  • Cu based amorphous ($Cu_{54}Zr_{22}Ti_{18}Ni_{6}$) powders were deposited onto Al 6061 substrates by cold spray process with different powder preheating temperatures (below glass transition temperature: $350^{\circ}C$, near glass transition temperature: $430^{\circ}C$ and near crystallization temperature: $500^{\circ}C$). The microstructure and macroscopic properties (hardness, wear and corrosion) of Cu based amorphous coating layers were also investigated. X-ray diffraction results showed that cold sprayed Cu based amorphous coating layers of $300{\sim}350{\mu}m$ thickness could be well manufactured regardless of powder preheating temperature. Porosity measurements revealed that the coating layers of $430^{\circ}C$ and $500^{\circ}C$ preheating temperature conditions had lower porosity contents (0.88%, 0.93%) than that of the $350^{\circ}C$ preheating condition (4.87%). Hardness was measured as 374.8 Hv ($350^{\circ}C$), 436.3 Hv ($430^{\circ}C$) and 455.4 Hv ($500^{\circ}C$) for the Cu based amorphous coating layers, respectively. The results of the suga test for the wear resistance property also corresponded well to the hardness results. The critical anodic current density ($i_{c}$) according to powder preheating temperature conditions of $430^{\circ}C$, $500^{\circ}C$ was lower than that of the sample preheated at $350^{\circ}C$, respectively. The higher hardness, wear and corrosion resistances of the preheating conditions of near $T_{g}$ and $T_{x}$, compared to the properties of below $T_{g}$, could be well explained by the lower porosity of coating layer.

Superconducting Thick Film by Lateral Field Assisted EPD (측면보조전계 인가 전기영동전착 초전도후막)

  • 전용우;소대화;조용준
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.3
    • /
    • pp.679-685
    • /
    • 2004
  • Although the electrophoretic deposition method has the advantage of simple processing procedure, less fabrication facilities, and easier control for deposition thickness and wire length, providing economical and technical merits, it also has the disadvantages of cracking and porosity phenomena, requiring an improved processing method for higher particle density and constant particle orientation. we have developed an optimization method to increase the particle density and to unify its orientation, and have performed a study to overcome the cracking and porosity problems in the fabricated superconductor. In order to improve the surface uniformity and the conduction properties of the fabricated YBCO thick films, a system that applies alternate voltage vertically has been developed for the first time and applied to the electrophoretic deposition process. The applied alternate electric field caused a force to be exerted on each YBCO particle and resulted in a rotation of the particle in the direction of applied electric field, accomplishing a uniform particle orientation. We name this process as the shaky-aligned electrophoretic deposition method. For commercial utilization and efficiency, in this dissertation, alternating voltage of 60 Hz and 25 ∼ 120 V/cm was proposed to apply it as a subsidiary source for shaky-flow deposition so that the fabricated thin film showed uniform surface morphology with less voids and cracks and Tc,zero of 90 K and the critical current density of 3419 A/$cm^2$.

Progress in $MgB_2$ Superconductor Wires and Tapes

  • Kim, Jung-Ho;Kumakura, Hiroaki;Rindflesich, Matthew;Dou, Shi Xue;Hwang, Soo-Min;Joo, Jin-Ho
    • Progress in Superconductivity
    • /
    • v.12 no.2
    • /
    • pp.75-81
    • /
    • 2011
  • We report on the progress that has been made in developing $MgB_2$ superconducting wires and tapes for commercialization and research efforts. A number of techniques have been developed to overcome the obstacle posed by the poor critical current density ($J_c$) of pristine $MgB_2$. Chemical doping has proved to be the effective way to modify and enhance the superconducting properties, such as the $J_c$ and the irreversibility field ($B_{irr}$). More than 100 different types of dopants have been investigated over the past 8 years. Among these, the most effective dopants have been identified to be SiC and malic acid ($C_4H_6O_5$). The best results, viz. a $B_{irr}$ of 22 T and $J_c$ of $30,000\;A{\cdot}cm^{-2}$ at 4.2 K and 10 T, were reported for malic acid doped $MgB_2$ wires, which matched the benchmark performance of commercial low temperature superconductor wires. In this work, we discuss the progress made in $MgB_2$ conductors over the past few years at the University of Wollongong, Hyper Tech Research, Inc., and Ohio State University.

A Study of Strength, Fracture Toughness and Superconducting Properties of YBCO-Ag Composite Superconductors (YBCO-Ag 복합초전도체의 강도, 파괴인성 및 초전도성질에 관한 연구)

  • Joo, Jin-Ho;Ur, Soon-Chul
    • Korean Journal of Materials Research
    • /
    • v.8 no.5
    • /
    • pp.394-398
    • /
    • 1998
  • We have studied the effect of Ag additions on the microstructure and the related mechanical and supercon¬ducting properties of $ YBa_{2}$$Cu_{3}$$O_{7-\delta}$ (YBCO) superconductors. A 5-15 vol.% of Ag was added to YBCO in the forms of Ag and $AgNO_{3}$, powder and the resultant microstructural evolution was evaluated. It was observed that the strength and fracture toughness of YBCO increased with increasing Ag content. These improvements in strength and fracture toughness are believed to be due to the strengthening mechanisms caused by the presence of Ag. In addition, YBCO-Ag composite superconductors showed higher values of strength and fracture toughness when Ag was added in the form of AgNO, than those of which was added Ag. The higher mechanical properties of YBCO- Ag resulting from $AgNO_{3}$, addition are probably due to the microstructure of more finely and uniformly distributed Ag particles. The addition of Ag also showed slightly improved critical current density of YBCO superconductors.

  • PDF

A Techno-Economic Study of Commercial Electrochemical CO2 Reduction into Diesel Fuel and Formic Acid

  • Mustafa, Azeem;Lougou, Bachirou Guene;Shuai, Yong;Razzaq, Samia;Wang, Zhijiang;Shagdar, Enkhbayar;Zhao, Jiupeng
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.148-158
    • /
    • 2022
  • The electrochemical CO2 reduction (ECR) to produce value-added fuels and chemicals using clean energy sources (like solar and wind) is a promising technology to neutralize the carbon cycle and reproduce the fuels. Presently, the ECR has been the most attractive route to produce carbon-building blocks that have growing global production and high market demand. The electrochemical CO2 reduction could be extensively implemented if it produces valuable products at those costs which are financially competitive with the present market prices. Herein, the electrochemical conversion of CO2 obtained from flue gases of a power plant to produce diesel and formic acid using a consistent techno-economic approach is presented. The first scenario analyzed the production of diesel fuel which was formed through Fischer-Tropsch processing of CO (obtained through electroreduction of CO2) and hydrogen, while in the second scenario, direct electrochemical CO2 reduction to formic acid was considered. As per the base case assumptions extracted from the previous outstanding research studies, both processes weren't competitive with the existing fuel prices, indicating that high electrochemical (EC) cell capital cost was the main limiting component. The diesel fuel production was predicted as the best route for the cost-effective production of fuels under conceivable optimistic case assumptions, and the formic acid was found to be costly in terms of stored energy contents and has a facile production mechanism at those costs which are financially competitive with its bulk market price. In both processes, the liquid product cost was greatly affected by the parameters affecting the EC cell capital expenses, such as cost concerning the electrode area, faradaic efficiency, and current density.

Crystal growth and transport current properties of cylindrical (YSmNd)-Ba-Cu-O superconductors by zone melt growth method (존멜팅법을 이용한 원통형 (YSmNd)-Ba-Cu-O계 초전도체의 결정성장 및 수송 전류 특성)

  • Kim, So-Jung;Park, Jong-Kuk
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.21 no.5
    • /
    • pp.199-204
    • /
    • 2011
  • $(YSmNd)_{1.8}Ba_{2.4}Cu_{3.4}O_{7-x}$ [(YSN)1.8] high $T_c$ superconductor was directionally grown by zone melt growth process, in air atmosphere. In this study, optimum melting temperature and growth rate were $1100^{\circ}C$ and 3.5 mm/hr, respectively. The microstructure of well-textured (YSN)1.8 samples were examined by XRD, optical microscopy, TEM and SQUID magnetometer. The critical current density of these samples were measured by the direct transporting current method. In the observation using an optical microscopy, nonsuperconducting $(YSmNd)_2BaCuO_5$[(YSN)211] inclusions of (YSN)1.8 superconductor uniformly distributed within the superconducting (YSmNd)$Ba_2Cu_3O_x$[(YSN)123] matrix. The directionally melt-textured (YSN)1.8 superconductor showed an onset $T_c{\geq}90\;K$ and sharp superconducting transition. The transport $J_c$ values were 830 A and $3.93{\times}10^4$ (A/$cm^2$) at 77 K self-field, respectively.

Evaluation of Water Quality Change by Membrane Damage to Pretreatment Process on SDI in Wastewater Reuse (하수재이용에서 전처리 막 손상에 의한 수질변화가 SDI에 미치는 영향평가)

  • Lee, Min Soo;Seo, Dongjoo;Lee, Yong-Soo;Chung, Kun Yong
    • Membrane Journal
    • /
    • v.32 no.4
    • /
    • pp.253-263
    • /
    • 2022
  • This study suggests a guideline for designing unit process of wastewater reuse in terms of a maintenance of the process based on critical parameters to draw a high quality performance of RO unit. Defining the parameters was done by applying membrane integrity test (MIT) in pretreatment process utilizing lab-scale MF. SDI is utilized for judging whether permeate is suitable to RO unit. However, result said TOC concentration matching with particle count analysis is better for judging the permeate condition. When membrane test pressure (Ptest) was measured to derive log removal value in PDT, virgin state of membrane fiber was used to measure dynamic contact angle utilizing surface tension of the membrane fiber. Actually, foulant affects to the state of membrane surface, and it decreases the Ptest value along with time elapsed. Consequently, LRVDIT is also affected by Ptest value. Thus, sensitivity of direct integrity test descends with result of Ptest value change, so Ptest value should be considered not the virgin state of the membrane but its current state. Overall, this study focuses on defining design parameters suitable to MF pretreatment for RO process in wastewater reuse by assessing its impact. Therefore, utilities can acknowledge that the membrane surface condition must be considered when users conduct the direct integrity test so that Ptest and other relative parameter used to calculate LRVDIT are adequately measured.

Honeycomb-type Single Chamber SOFC Running on Methane-Air Mixture (Methane-Air 혼합 Gas에서 구동하는 하니컴 형태의 SC-SOFC)

  • Park Byung-Tak;Yoon Sung Pil;Kim Hyun Jae;Nam Suk Woo;Han Jonghee;Lim Tae-Hoon;Hong Seong-Ahn;Lee Dokyol
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.306-309
    • /
    • 2005
  • One of the most critical issues in sol id oxide fuel cell (SOFC)running on hydrocarbon fuels is the risk of carbon formation from the fuel gas. The simple method to reduce the risk of carbon formation from the reactions is to add steam to the fuel stream, leading to the carbon gasification react ion. However, the addition of steam to fuel is not appropriate for the auxiliary power unit (APU) and potable power generation (PPG) systems due to an increase of complexity and bulkiness. In this regard, many researchers have focused on so-called 'direct methane' operation of SOFC, which works with dry methane without coking. However, coking can be suppressed only by the operation with a high current density, which may be a drawback especially for the APU and PPG systems. The single chamber fuel cell (SC-SOFC) is a novel simplification of the conventional SOFC into which a premixed fuel/air mixture is introduced. It relies on the selectivity of the anode and cathode catalysts to generate a chemical potential gradient across the cell. Moreover it allows compact and seal-free stack design. In this study, we fabricated honeycomb type mixed-gas fuel cell (MGFC) which has advantages of stacking to the axial direction and increasing volume power density. Honeycomb-structured SOFC with four channels was prepared by dry pressing method. Two alternative channels were coated with electrolyte and cathode slurry in order to make cathodic reaction sites. We will discuss that the anode supported honeycomb type cell running on mixed gas condition.

  • PDF

Development of Large-sized YBCO High Temperature Superconductor Bulk Magnets and Actuator (대면적 YBCO 고온 초전도 벌크 자석 및 조작기 개발)

  • Han, Sang-Chul;Park, Byung-Jun;Jung, Se-Yong;Han, Young-Hee;Lee, Jong-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.7
    • /
    • pp.450-455
    • /
    • 2015
  • For the practical application of a YBCO superconductor bulk, the superconductor bulk magnet with high magnetic field on a large area surface should be fabricated. To make this, YBCO single crystal bulks with fine $Y_2BaCuO_5$(Y211) particles have been prepared by the top-seed melt growth(TSMG) method with $YBa_2Cu_3O_x$, $Y_2O_3$, and $CeO_2$ mixing precursor. By using $Y_2O_3$ instead of $Y_2BaCuO_5$ as precursor, the manufacturing process became simpler and more economical. The microstructures, trapped field and critical current density of the various conditioned YBCO bulks have been observed, analyzed and measured. The different characteristic values of the several samples have been analyzed from the viewpoint of their microstructures. We have developed a $8{\times}12cm$ size superconductor bulk magnet, up to 3 T class, by using the 4 T class-high field superconducting magnetizer and confirmed the applicability of the transmission level circuit breakers by measuring the strength and speed of the superconductor bulk magnet actuator.

Comparison of Reciprocal and Concentric Winding Arrangement of HTS Transformer (고온초전도 변압기의 교호 배치 권선과 동심형 배치 권선의 비교)

  • Kim, Sung-Hoon;Kim, Woo-Seok;Lee, Sang-Jin;Park, Kyeong-Dal;Joo, Hyeong-Gil;Hong, Gye-Won;Han, Jin-Ho;Hahn, Song-yop;Park, Chan-Bae
    • Progress in Superconductivity
    • /
    • v.5 no.1
    • /
    • pp.61-64
    • /
    • 2003
  • In HTS transformer with double pancake windings, the perpendicular component of leakage magnetic flux density ($B_{r}$ ) applied to HTS tapes of double pancake windings of HTS transformer acts as a cause to decrease the critical current in HTS tape. So, in this paper, HTS transformer with reciprocal arrangement winding is designed. And in order to investigate the$ B_{r}$ applied to HTS windings, the 2-D non-linear electromagnetic analysis of HTS transformer is performed by using the OPERA 2D. The maximum $B_{r}$ applied to winding of HTS transformer is 0.112 T and the characteristics of HTS transformer were also obtained. But in this type of winding arrangement, reciprocal arrangement, the generated ac-loss to the HTS windings is very high because of the applied $B_{r}$ to HTS windings. Therefore, in order to reduce the generated ac-loss to the HTS windings, the new design of HTS transformer with concentric winding arrangement is presented in this paper and the 2-D non-linear electromagnetic analysis and the ac-loss for HTS transformer with the concentric winding arrangement is also carried out.

  • PDF