• Title/Summary/Keyword: Engineering analysis

Search Result 89,798, Processing Time 0.113 seconds

Dose Distribution According to the Tissue Composition Using Wedge Filter by Radiochromic Film (쐐기필터 사용 시 레디오크로믹 필름을 이용한 조직에 따른 선량분포 연구)

  • Kim, Yon-Lae;Lee, Jeong-Woo;Park, Byung-Moon;Jung, Jae-Yong;Park, Ji-Yeon;Suh, Tae-Suk
    • Journal of radiological science and technology
    • /
    • v.35 no.2
    • /
    • pp.157-164
    • /
    • 2012
  • The purpose of this study is to analyze the dose distribution when wedge filter is used in the various tissue electron density materials. The dose distribution was assessed that the enhanced dynamic wedge filter and physical wedge filter were used in the solid water phantom, cork phantom, and air cavity. The film dosimetry was suitable simple to measure 2D dose distribution. Therefore, the radiochromic films (Gafchromic EBT2, ISP, NJ, USA) were selected to measure and to analyze the dose distributions. A linear accelerator using 6 MV photon were irradiated to field size of $10{\times}10cm^2$ with 400 MUs. The dose distributions of EBT2 films were analyzed the in-field area and penumbra regions by using dose analysis program. In the dose distributions of wedge field, the dose from a physical wedge was higher than that from a dynamic wedge at the same electron density materials. A dose distributions of wedge type in the solid water phantom and the cork phantom were in agreements with 2%. However, the dose distribution in air cavity showed the large difference with those in the solid water phantom or cork phantom dose distributions. Dose distribution of wedge field in air cavity was not shown the wedge effect. The penumbra width, out of the field of thick and thin, was observed larger from 1 cm to 2 cm at the thick end. The penumbra of physical wedge filter was much larger average 6% than the dynamic wedge filter. If the physical wedge filter is used, the dose was increased to effect the scatter that interacted with photon and physical wedge. In the case of difference in electron like the soft tissue, lung, and air, the transmission, absorption, and scattering were changed in the medium at high energy photon. Therefore, the treatment at the difference electron density should be inhomogeneity correction in treatment planning system.

Chemical and Spectroscopic Characterization of Peat Moss and Its Different Humic Fractions (Humin, Humic Acid and Fulvic Acid) (피트모스에서 추출한 휴믹물질(휴믹산, 풀빅산, 휴민)의 화학적 및 분광학적 물질특성 규명)

  • Lee Chang-Hoon;Shin Hyun-Sang;Kang Ki-Hoon
    • Journal of Soil and Groundwater Environment
    • /
    • v.9 no.4
    • /
    • pp.42-51
    • /
    • 2004
  • Peat humin(p-Humin), humic acid(p-HA) and fulvic acid(p-FA) were isolated from Canadian Sphagnum peat moss by dissolution in 0.1M NaOH followed by acid precipitation. After purification cycles, they are characterized for their elemental compositions and, acid/base properties. Functionalities and carbon structures of the humic fractions were also characterized using FT-IR and solid state $^{13}C$-NMR spectroscopy. Those results are compared with one another and with soil humic substances from literatures. Main purpose of this study was to present a chemical and spectroscopic characterization data of humic substance from peat moss needed to evaluate its environmental applicability. The relative proportions of the p-Humin, p-HA and p-FA in the peat moss was $76\%,\;18\%,\;and\;3\%$, respectively, based on the total organic matter content ($957{\pm}32\;g/kg$). Elemental composition of p-Humin were found to be $C_{1.00}H_{1.52}O_{0.79}N_{0.01}$ and had higher H/C and (N+O)/C ratio compared to those of p-HA($C_{1.00}H_{1.09}O_{0.51}N_{0.02}$) and p-FA($C_{1.00}H_{1.08}O_{0.65}N_{0.01}$). Based on the analysis of pH titration data, there are two different types of acidic functional groups in the peat moss and its humic fractions and their proton exchange capacities(PEC, meq/g) were in the order p-FA(4.91) >p-HA(4.09) >p-Humin(2.38). IR spectroscopic results showed that the functionalities of the peat moss humic molecules are similar to those of soil humic substances, and carboxylic acid(-COOH) is main function group providing metal binding sites for Cd(II) sorption. Spectral features obtained from $^{13}C$-NMR indicated that peat moss humic molecules have rather lower degree of humification, and that important structural differences exist between p-Humin and soluble humic fractions(p-HA and p-FA).

Analysis of Signal Properties in accordance with electrode area of x-ray conversion material (X선 검출 물질의 전극 면적에 따른 신호특성 분석)

  • Jeon, S.P.;Kim, S.H.;CHO, K.S.;Jung, S.H.;Park, J.K.;Kang, S.S.;Han, Y.H.;Kim, K.S.;Mun, C.W.;Nam, S.H.
    • Journal of the Korean Society of Radiology
    • /
    • v.4 no.1
    • /
    • pp.5-9
    • /
    • 2010
  • In recent, a digital x-ray detector attracted worldwide attention and there are many studies to commercialize. There are two methods in digital x-ray detector. This method is an Indirect method and Direct method. This study is to see the differences between the digital x-ray detector based on a-Se used in the existing indirect conversion method and an x-ray conversion material that has better SNR(Signal-to-noise ratio) and property than the a-Se. To solve the problem that is difficult to make a large area film using Screen-Print method, we used a Screen-Print method. In this study, we used a polyclystal $HgI_2$ as x-ray conversion material and a sample thickness is $150{\mu}m$ and an area is $3cm{\times}3cm$. ITO(Indium-Tin-Oxide) electrode was used as top electrode using a Magnetron Sputtering System and each area is $3cm{\times}3cm$, $2cm{\times}2cm$ and $1cm{\times}1cm$ and then we evaluated darkcurrent, sensitivity and SNR of the $HgI_2$ film are measured, then we evaluated the electrical properties. And we used a current integration mode when I-V test. This experiment shows that the sensitivity increases in accordance with the area of the electrode but the SNR is decreased because of the high darkcurrent. Through fabricating of various thicknesses and optimal electrodes, we will optimize SNR in the future work.

Optimization of sterilization conditions for the production of retorted steamed egg using response surface methodology (반응표면분석을 이용한 레토르트 계란찜의 살균조건 최적화)

  • Cheigh, Chan-Ick;Mun, Ji-Hye;Chung, Myong-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.50 no.3
    • /
    • pp.331-338
    • /
    • 2018
  • The purpose of this study was to determine the optimum sterilization conditions for the production of retorted steamed egg using response surface methodology. Sterilization processes for eighteen conditions using varying sterilization temperature ($X_1$), time ($X_2$), and method ($X_3$) as the independent variables were carried out through a $3^2{\times}2$ experimental factorial design. Quality evaluations after sterilization included measurements of $F_0$ value ($Y_1$), peak stress ($Y_2$), pH ($Y_3$), color value ($Y_{4-6}$), and organoleptic test [preference for appearance ($Y_7$), overall acceptability ($Y_8$), and preference for texture ($Y_9$) and egg taste ($Y_{10}$)]. Dependent variables ($Y_{1-10}$) of eighteen conditions were more affected by temperature and time than by the sterilization method. Eight factors were selected among the dependent variables as significant factors related to the quality of the steamed egg. Finally, by establishing an optimum range of each dependent variable and contour analysis, the optimum sterilization conditions for the production of steamed egg were determined to be $120^{\circ}C$ for 25 min using a 2-step sterilization process.

Validation of Load Calculation Method for Greenhouse Heating Design and Analysis of the Influence of Infiltration Loss and Ground Heat Exchange (온실 난방부하 산정방법의 검증 및 틈새환기와 지중전열의 영향 분석)

  • Shin, Hyun-Ho;Nam, Sang-Woon
    • Horticultural Science & Technology
    • /
    • v.33 no.5
    • /
    • pp.647-657
    • /
    • 2015
  • To investigate a method for calculation of the heating load for environmental designs of horticultural facilities, measurements of total heating load, infiltration rate, and floor heat flux in a large-scale plastic greenhouse were analyzed comparatively with the calculation results. Effects of ground heat exchange and infiltration loss on the greenhouse heating load were examined. The ranges of the indoor and outdoor temperatures were $13.3{\pm}1.2^{\circ}C$ and $-9.4{\sim}+7.2^{\circ}C$ respectively during the experimental period. It was confirmed that the outdoor temperatures were valid in the range of the design temperatures for the greenhouse heating design in Korea. Average infiltration rate of the experimental greenhouse measured by a gas tracer method was $0.245h^{-1}$. Applying a constant ventilation heat transfer coefficient to the covering area of the greenhouse was found to have a methodological problem in the case of various sizes of greenhouses. Thus, it was considered that the method of using the volume and the infiltration rate of greenhouses was reasonable for the infiltration loss. Floor heat flux measured in the center of the greenhouse tended to increase toward negative slightly according to the differences between indoor and outdoor temperature. By contrast, floor heat flux measured at the side of the greenhouse tended to increase greatly into plus according to the temperature differences. Based on the measured results, a new calculation method for ground heat exchange was developed by adopting the concept of heat loss through the perimeter of greenhouses. The developed method coincided closely with the experimental result. Average transmission heat loss was shown to be directly proportional to the differences between indoor and outdoor temperature, but the average overall heat transfer coefficient tended to decrease. Thus, in calculating the transmission heat loss, the overall heat transfer coefficient must be selected based on design conditions. The overall heat transfer coefficient of the experimental greenhouse averaged $2.73W{\cdot}m^{-2}{\cdot}C^{-1}$, which represents a 60% heat savings rate compared with plastic greenhouses with a single covering. The total heating load included, transmission heat loss of 84.7~95.4%, infiltration loss of 4.4~9.5%, and ground heat exchange of -0.2~+6.3%. The transmission heat loss accounted for larger proportions in groups with low differences between indoor and outdoor temperature, whereas infiltration heat loss played the larger role in groups with high temperature differences. Ground heat exchange could either heighten or lessen the heating load, depending on the difference between indoor and outdoor temperature. Therefore, the selection of a reference temperature difference is important. Since infiltration loss takes on greater importance than ground heat exchange, measures for lessening the infiltration loss are required to conserve energy.

Analysis on Probable Rainfall Intensity in Kyungpook Province (경북지방(慶北地方)의 확률(確率) 강우강도(降雨强度)에 대(對)한 분석(分析))

  • Suh, Seung Duk;Park, Seung Young
    • Current Research on Agriculture and Life Sciences
    • /
    • v.4
    • /
    • pp.77-86
    • /
    • 1986
  • The purpose of this study is to estimate an optimum formula of rainfall intensity on basis of the characteristics for short period of rainfall duration in Kyungpook province for the design of urban sewerage and small basin drain system. Results studied are as follows; 1. The optimum method for Taegu and Pohang, Iwai's and Gumbel-Chow's method are recommended respectively. 2. The opotimum type of rainfall intensity for these area, $I=\frac{a}{\sqrt{t}+b}$ (Japanese type), is confirmed with 2.52~4.17 and 1.86~4.54 as a standard deviation for Taegu and Pohang respectively. The optimum formula of rainfall intensity are as follows. Taegu : T : 200 year - $I=\frac{824}{\sqrt{t}+1.5414}$ T : 100 year - $I=\frac{751}{\sqrt{t}+1.4902}$ T : 50 year - $I=\frac{678}{\sqrt{t}+1.4437}$ T : 30 year - $I=\frac{623}{\sqrt{t}+1.4017}$ T : 20 year - $I=\frac{580}{\sqrt{t}+1.3721}$ T : 10 year - $I=\frac{502}{\sqrt{t}+1.3145}$ T : 5 year - $I=\frac{418}{\sqrt{t}+1.2515}$ Pohang : T : 200 year - $I=\frac{468}{\sqrt{t}+1.1468}$ T : 100 year - $I=\frac{429}{\sqrt{t}+1.1605}$ T : 50 year - $I=\frac{391}{\sqrt{t}+1.1852}$ T : 30 year - $I=\frac{362}{\sqrt{t}+1.2033}$ T : 20 year - $I=\frac{339}{\sqrt{t}+1.2229}$ T : 10 year - $I=\frac{299}{\sqrt{t}+1.2578}$ T : 5 year - $I=\frac{257}{\sqrt{t}+1.3026}$ 3. Significant I.D.F. curves derived should be applied to estimate a suitable rainfall intensity and rainfall duration.

  • PDF

Determination of Polycyclic Aromatic Hydrocarbons in Smoked Food Products (훈연식품 중 polycyclic aromatic hydrocarbons 함량 분석)

  • Seo, Ilwon;Nam, Hejung;Lee, Songyoung;Lee, Kyueun;Shin, Han-Seung
    • Food Engineering Progress
    • /
    • v.13 no.3
    • /
    • pp.195-202
    • /
    • 2009
  • This study was accomplished that analysis of seven polycyclic aromatic hydrocarbons (PAHs) in smoked or nonsmoked processing foods by high performance liquid chromatography (HPLC) with fluorescence detection. The calibration line was constructed with injected different levels of standard concentration. Limit of detection (LOD) and limit of quantification(LOQ) showed higher linearity ($r^{2}$=0.998) reasonably, and recovery exhibited 0.033-0.666 $\mu$g/kg, 0.108-2.217 $\mu$g/kg and 69.31-90.14%, respectively. As a result, the samples using smoked tuna as smoked materials contained seven PAHs with different range from 0.256 to 0.486 $\mu$g/kg. The benzo[a]pyrene, indicator of PAHs, was detected to below the LOQ in two samples. Concentrations of benzo[a]pyrene in three samples were below the 2 $\mu$g/kg which is the limit of regulation. Smoked tuna sauces were detected from 0.321 to 0.552 $\mu$g/kg and not detected in drying powders. PAHs of smoked meat products were ranged from 0.720 to 2.027 $\mu$g/kg and are higher than concentration of tuna smoked samples. PAHs were very low in non-smoked foods including mustard, herb, and roasted meats.

A Study on the Ecosystem Services Value Assessment According to City Development: In Case of the Busan Eco-Delta City Development (도시개발에 따른 생태계서비스 가치 평가 연구: 부산 에코델타시티 사업을 대상으로)

  • Choi, Jiyoung;Lee, Youngsoo;Lee, Sangdon
    • Journal of Environmental Impact Assessment
    • /
    • v.28 no.5
    • /
    • pp.427-439
    • /
    • 2019
  • Natural environmental ecology ofthe environmental impact assessment(EIA)is very much lacking in quantitative evaluation. Thus, this study attempted to evaluate quantitative assessment for ecosystem service in the site of Eco-delta project in Busan. As a part of climate change adaptation, this study evaluated and compared with the value for carbon fixation and habitat quality using the InVEST model before and after development with three alternatives of land-use change. Carbon fixation showed 216,674.48 Mg of C (year 2000), and 203,474.25 Mg of C (year 2015)reducing about 6.1%, and in the future of year 2030 the value was dropped to 120,490.84 Mg of C which is 40% lower than year 2015. Alternative 3 of land use planning was the best in terms of carbon fixation showing 6,811.31 Mg of C. Habitat quality also changed from 0.57 (year 2000), 0.35 (year 2015), and 0.21 (year 2030) with continued degradation as development goes further. Alternative 3 also was the highest with 0.21(Alternative 1 : 0.20, Alternative 2 : 0.18). In conclusion,this study illustrated that quantitative method forland use change in the process of EIA can helpdecision making for stakeholders anddevelopers with serving the best scenario forlow impact of carbon. Also it can help better for land use plan, greenhouse gas and natural environmental assets in EIA. This study could be able to use in the environmental policy with numerical data of ecosystem and prediction. Supplemented with detailed analysis and accessibility of basic data, this method will make it possible for wide application in the ecosystem evaluation.

Characteristics of Beach Change and Sediment Transport by Field Survey in Sinji-Myeongsasimni Beach (신지명사십리 해수욕장에서 현장조사에 의한 해빈변화와 퇴적물이동 특성)

  • Jeong, Seung Myong;Park, Il Heum
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.5
    • /
    • pp.594-604
    • /
    • 2021
  • To evaluate the causes of beach erosion in Sinji-Myeongsasimni Beach, external forces, such as tides, tidal currents, and waves, were observed seasonally from March 2019 to March 2020, and the surface sediments were analyzed for this period. In addition, the shoreline positions and beach elevations were regularly surveyed with a VRS GPS and fixed-wing drone. From these field data, the speed of the tidal currents was noted to be insufficient, but the waves were observed to af ect the deformation of the beach. As the beach is open to the southern direction, waves of heights over 1 m were received in the S-SE direction during the spring, summer, and fall seasons. Large waves with heights over 2 m were observed during typhoons in summer and fall. Because of the absence of typhoons for the previous two years from July 2018, the beach area over datum level (DL) as of July 2018 was greater by 30,138m2 compared with that of March 2019, and the beach area as of March 2020 decreased by 61,210m2 compared with that of March 2019 because of four typhoon attacks after July 2018. The beach volume as of March 2019 decreased by 5.4% compared with that of July 2018 owing to two typhoons, and the beach volume as of September 2019 decreased by 7.3% because of two typhoons during the observation year. However, the volume recovered slightly by about 3% during fall and winter, when there were no high waves. According to the sediment transport vectors by GSTA, the sediments were weakly influxed from small streams located at the center of the beach; the movement vectors were not noticeable at the west beach site, but the westward sediment transport under the water and seaward vectors from the foreshore beach were prominently observed at the east beach site. These patterns of westward sediment vectors could be explained by the angle between the annual mean incident wave direction and beach opening direction. This angle was inclined 24° counterclockwise with the west-east direction. Therefore, the westward wave-induced currents developed strongly during the large-wave seasons. Hence, the sand content is high in the west-side beach but the east-side beach has been eroded seriously, where the pebbles are exposed and sand dune has decreased because of the lack of sand sources except for the soiled dunes. Therefore, it is proposed that efforts for creating new sediment sources, such as beach nourishment and reducing wave heights via submerged breakwaters, be undertaken for the eastside of the beach.

Seismic response characteristics of the hypothetical subsea tunnel in the fault zone with various material properties (다양한 물성의 단층대를 통과하는 가상해저터널의 지진 시 응답 특성)

  • Jang, Dong In;Kwak, Chang-Won;Park, Inn-Joon;Kim, Chang-Yong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.6
    • /
    • pp.1061-1071
    • /
    • 2018
  • A subsea tunnel, being a super-sized underground structure must ensure safety at the time of earthquake, as well as at ordinary times. At the time of earthquake, in particular, of a subsea tunnel, a variety of response behaviors are induced owing to relative rigidity to the surrounding ground, or difference of displacement, so that the behavior characteristics can be hardly anticipated. The investigation aims to understand the behavior characteristics switched by earthquake of an imaginary subsea tunnel which passes through a fault zone having different physical properties from those of the surrounding ground. In order to achieve the aim, dynamic response behaviors of a subsea tunnel which passes through a fault zone were observed by means of indoor experiments. For the sake of improved earthquake resistance, a shape of subsea tunnel to which flexible segments have been applied was considered. Afterward, it is believed that a D/B can be established through 3-dimensional earthquake resistance interpretation of various grounds, on the basis of verified results from the experiments and interpretations under various conditions. The present investigation performed 1 g shaking table test in order to verify the result of 3-dimensional earthquake resistance interpretation. A model considering the similitude (1:100) of a scale-down model test was manufactured, and tests for three (3) Cases were carried out. Incident seismic wave was introduced by artificial seismic wave having both long-period and short-period earthquake properties in the horizontal direction which is rectangular to the processing direction of the tunnel, so that a fault zone was modeled. For numerical analysis, elastic modulus of the fault zone was assumed 1/5 value of the modulus of individual grounds surround the tunnel, in order to simulate a fault zone. Resultantly, reduced acceleration was confirmed with increase of physical properties of the fault zone, and the result from the shaking table test showed the same tendency as the result from 3-dimensional interpretation.