• Title/Summary/Keyword: Engineering analysis

Search Result 89,798, Processing Time 0.087 seconds

Study on Solid Propellant Grain Burn-back Analysis Applying Face Offsetting Method (Face Offsetting Method를 적용한 고체 로켓 모터 그레인 Burn-back 해석 연구)

  • Oh, Seok-Hwan;Lee, Sang-Bok;Kim, Yong-Chan;Cha, Seung-Won;Kim, Kyoung-Rae;Kim, Duk-Min;Lee, Hyoungjin;Ro, Tae-Seong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.4
    • /
    • pp.81-91
    • /
    • 2019
  • The 3-dimensional grain burn-back analysis is performed using the face offsetting method for calculating the solid rocket motor performance. The grain burning configuration analysis is a moving surface problem that calculates the regression of the burning surface. In the previous study, various moving interface analysis methods were applied for the grain burn-back analysis, but the results were imperfect. In this study, a 3-dimensional grain burn-back analysis module is developed using the face offsetting method, which combines the advantages of the existing moving interface analysis methods to increase the accuracy and robustness. As a result, the face offsetting method is proved to be efficient for the grain burn-back analysis.

An Analysis of the Determinants of Research Productivity among Professors of Science and Engineering (이공계 대학교수의 연구생산성 영향요인 분석)

  • 류희숙;배종태
    • Journal of Technology Innovation
    • /
    • v.5 no.1
    • /
    • pp.44-66
    • /
    • 1997
  • This study is a critical assessment of research productivity through publication among scientists and engineers. Through the analysis of the 223 mail questionnaires collected from professors of mechanical engineering, electrical engineering, chemistry and physics, this study obtains the particular determinants of publication productivity at the science and engineering schools in Korea. The data are analyzed using correlation, ANOVA, multiple regression analysis and path analysis. The result shows that early research productivity and the number of doctoral students are very important to publish good research articles. Also the qualities of professors' Ph.D. institution and the quality of employing university are critical influencing factors to publication productivity.

  • PDF

Systems-Level Analysis of Genome-Scale In Silico Metabolic Models Using MetaFluxNet

  • Lee, Sang-Yup;Woo, Han-Min;Lee, Dong-Yup;Choi, Hyun-Seok;Kim, Tae-Yong;Yun, Hong-Seok
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.5
    • /
    • pp.425-431
    • /
    • 2005
  • The systems-level analysis of microbes with myriad of heterologous data generated by omics technologies has been applied to improve our understanding of cellular function and physiology and consequently to enhance production of various bioproducts. At the heart of this revolution resides in silico genome-scale metabolic model, In order to fully exploit the power of genome-scale model, a systematic approach employing user-friendly software is required. Metabolic flux analysis of genome-scale metabolic network is becoming widely employed to quantify the flux distribution and validate model-driven hypotheses. Here we describe the development of an upgraded MetaFluxNet which allows (1) construction of metabolic models connected to metabolic databases, (2) calculation of fluxes by metabolic flux analysis, (3) comparative flux analysis with flux-profile visualization, (4) the use of metabolic flux analysis markup language to enable models to be exchanged efficiently, and (5) the exporting of data from constraints-based flux analysis into various formats. MetaFluxNet also allows cellular physiology to be predicted and strategies for strain improvement to be developed from genome-based information on flux distributions. This integrated software environment promises to enhance our understanding on metabolic network at a whole organism level and to establish novel strategies for improving the properties of organisms for various biotechnological applications.

Numerical analysis for structure-pile-fluid-soil interaction model of fixed offshore platform

  • Raheem, Shehata E. Abdel;Aal, Elsayed M. Abdel;AbdelShafy, Aly G.A.;Mansour, Mahmoud H.;Omar, Mohamed
    • Ocean Systems Engineering
    • /
    • v.10 no.3
    • /
    • pp.243-266
    • /
    • 2020
  • In-place analysis for offshore platforms is required to make proper design for new structures and true assessment for existing structures. In addition, ensure the structural integrity of platforms components under the maximum and minimum operating loads and environmental conditions. In-place analysis was carried out to verify the robustness and capability of structural members with all appurtenances to support the applied loads in either operating condition or storm conditions. A nonlinear finite element analysis is adopted for the platform structure above the seabed and the pile-soil interaction to estimate the in-place behavior of a typical fixed offshore platform. The SACS software is utilized to calculate the natural frequencies of the model and to obtain the response of platform joints according to in-place analysis then the stresses at selected members, as well as their nodal displacements. The directions of environmental loads and water depth variations have an important effect on the results of the in-place analysis behavior. The influence of the soil-structure interaction on the response of the jacket foundation predicts is necessary to estimate the loads of the offshore platform well and real simulation of offshore foundation for the in-place analysis. The result of the study shows that the in-place response investigation is quite crucial for safe design and operation of offshore platform against the variation of environmental loads.

AUTOMATION OF QUANTITATIVE SAFETY EVALUATION IN CHEMICAL PROCESSES

  • Lee, Byung-Woo;Kang, Byoung-Gwan;Suh, Jung-Chul;Yoon, En-Sup
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.252-259
    • /
    • 1997
  • A method to automate hazard analysis of chemical plants is proposed in this paper. The proposed system is composed of three knowledge bases - unit knowledge base, organizational knowledge base and material knowledge base, and three hazard analysis algorithms - deviation, malfunction and accident analysis algorithm. Hazard analysis inference procedure is developed based on the actual hazard analysis procedures and accident development sequence. The proposed algorithm can perform hazard analysis in two methods and represent all conceivable types of accidents using accident analysis algorithm. In addition, it provides intermediate steps in the accident propagation, and enables the analysis result to give a useful information to hazard assessment. The proposed method is successfully demonstrated by being applied to diammonium phosphate manufacturing process. A system to automate hazard analysis is developed by using the suggested method. The developed system is expected to be useful in finding the propagation path of a fault or the cause of a malfunction as it is capable to approach causes of faults and malfunctions simultaneously.

  • PDF

Time-frequency analysis of reactor neutron noise under bubble disturbance and control rod vibration

  • Yuan, Baoxin;Guo, Simao;Yang, Wankui;Zhang, Songbao;Zhong, Bin;Wei, Junxia;Ying, Yangjun
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1088-1099
    • /
    • 2021
  • Time-frequency analysis technique is an effective analysis tool for non-stationary processes. In the field of reactor neutron noise, the time-frequency analysis method has not been thoroughly researched and widely used. This work has studied the time-frequency analysis of the reactor neutron noise experimental signals under bubble disturbance and control rod vibration. First, an experimental platform was established, and it could be employed to reactor neutron noise experiment and data acquisition. Secondly, two types of reactor neutron noise experiments were performed, and valid experimental data was obtained. Finally, time-frequency analysis was conducted on the experimental data, and effective analysis results were obtained in the low-frequency part. Through this work, it can be concluded that the time-frequency analysis technique can effectively investigate the core dynamics behavior and deepen the identification of the unstable core process.

Structural Analysis of RIROB(Reactor Inspection Robot) (원자로용 수중탐상기의 구조해석)

  • 권영주;최석호;김재희
    • Korean Journal of Computational Design and Engineering
    • /
    • v.8 no.1
    • /
    • pp.19-26
    • /
    • 2003
  • This paper presents the structural analysis of RIROB(Reactor Inspection Robot). Actually, several analyses such as kinetodynamics analysis, fluid mechanics analysis and structural mechanics analysis etc. should be carried out in the design of RIROB. These analyses are executed through the use of com-puter aided engineering(CAE) systems. The kinetodynamics analysis is carried out using a simple fluid dynamic analysis model for the water flow over the sensor support surface instead of difficult fluid mechanics analysis. Simultaneously the structural mechanics analysis is carried out to obtain the mini-mum thickness of the RIROB housing. The minimum thickness of the RIROB housing is evaluated to be 1.0 ㎝ for the safe design of RIROB. The kinetodynamics analysis of RIROB is performed using ADAMS and the static structural mechanics analysis of RIROB is performed using NISA.

The Needs Analysis of the General Eduction in Engineering Education for Undergraduate Students at Engineering Related Departments (공학계열 대학생들의 공학소양교육 요구분석)

  • Jung, Eun-Jung
    • Journal of Engineering Education Research
    • /
    • v.18 no.5
    • /
    • pp.22-31
    • /
    • 2015
  • The purpose of this study is to suggest the general education contents for undergraduate students at engineering related departments through need analysis in order to develop creative and integral talents. For this study, the need analysis was conducted by using focus group interviews, Borich's educational need equation and the Locus for Focus Model, and highly ranked priorities on both methods proposed as the highest priorities. As a result, 'drawing up a letter of self-introduction and a portfolio', 'understanding fields', 'understanding careers related to the major', 'presentation skills', 'knowledge for certificated exams', 'method to deduct creative ideas' were high on the list of top five priorities. The selected items by Locus for Focus Model show that undergraduate students at engineering related departments need general education contents associated with career development and communication by priority.

A Study on System Engineering Using Objected Oriented Approach (객체지향을 이용한 시스템엔지니어링에 관한 연구)

  • Lee, Jong-Woo;Shin, Duc-Ko
    • Proceedings of the KSR Conference
    • /
    • 2003.10c
    • /
    • pp.265-271
    • /
    • 2003
  • System engineering is one of the most important research topics in railway system for developing new railway system or improving existed system. The system engineering methods have been applied to innovate railway system. The system engineering activities, which are requirement analysis, functional analysis, system synthesis and analysis, sometimes requires longtime and tiresome works to fix some ideas level into some concrete forms. The system engineering using objected oriented method relieves the hard works of system engineering and clarifies the system engineering objects from its ambiguities. In this paper, we presented requirement model, analysis model and design model using objected oriented approach and showed the consistency of the system engineering work with an example of Automatic Train Control System.

  • PDF