• 제목/요약/키워드: Engineering analyses

검색결과 8,188건 처리시간 0.03초

In-plane and out-of-plane bending moments and local stresses in mooring chain links using machine learning technique

  • Lee, Jae-bin;Tayyar, Gokhan Tansel;Choung, Joonmo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제13권1호
    • /
    • pp.848-857
    • /
    • 2021
  • This paper proposes an efficient approach based on a machine learning technique to predict the local stresses on mooring chain links. Three-link and multi-link finite element analyses were conducted for a target chain link of D107 with steel grade R4; 24,000 and 8000 analyses were performed, respectively. Two serial Artificial Neural Network (ANN) models based on a deep multi-layer perceptron technique were developed. The first ANN model corresponds to multi-link analyses, where the input neurons were the tension force and angle and the output neurons were the interlink angles. The second ANN model corresponds to the three-link analyses with the input neurons of the tension force, interlink angle, and the local stress positions, and the output neurons of the local stress. The predicted local stresses for the untrained cases were reliable compared to the numerical simulation results.

Stability analyses of dual porosity soil slope

  • Satyanaga, Alfrendo;Moon, Sung-Woo;Kim, Jong R.
    • Geomechanics and Engineering
    • /
    • 제28권1호
    • /
    • pp.77-87
    • /
    • 2022
  • Many geotechnical analyses require the investigation of water flow within partially saturated soil zone to incorporate the effect of climatic conditions. It is widely understood that the hydraulic properties of the partially saturated soil should be included in the transient seepage analyses. However, the characteristics of dual porosity soils with dual-mode water retention curve are normally modelled using single-mode mathematical equation for simplification of the analysis. In reality, the rainwater flow can be affected significantly by the dual-mode hydraulic properties of the soil. This paper presents the variations of safety factor for dual porosity soil slope with dual-mode water retention curve and dual-mode unsaturated permeability. This paper includes the development of the new dual-mode unsaturated permeability to represent the characteristics of soil with the dual-mode water retention curve. The finite element analyses were conducted to examine the role of dual-mode water retention curve and dual-mode unsaturated permeability on the variations of safety factor under rainfall loading. The results indicate that the safety factor variations of dual porosity soil slope modelled using the dual-mode water retention curve and the unsaturated permeability equation are lower than those of dual porosity slope modelled using single-mode water retention curve and unsaturated permeability equations.

Cable sag-span ratio effect on the behavior of saddle membrane roofs under wind load

  • Hesham Zieneldin;Mohammed Heweity;Mohammed Abdelnabi;Ehab Hendy
    • Wind and Structures
    • /
    • 제36권3호
    • /
    • pp.149-160
    • /
    • 2023
  • Lightness and flexibility of membrane roofs make them very sensitive to any external load. One of the most important parameters that controls their behavior, especially under wind load is the sag/span ratio of edge cables. Based on the value of the pretension force in the edge cables and the horizontal projection of the actual area covered by the membrane, an optimized design range of cable sag/span ratios has been determined through carrying on several membrane form-finding analyses. Fully coupled fluid structure dynamic analyses of these membrane roofs are performed under wind load with several conditions using the CFD method. Through investigating the numerical results of these analyses, the behavior of membrane roofs with cables sag/span ratios selected from the previously determined optimized design range has been evaluated.

Effect of design spectral shape on inelastic response of RC frames subjected to spectrum matched ground motions

  • Ucar, Taner;Merter, Onur
    • Structural Engineering and Mechanics
    • /
    • 제69권3호
    • /
    • pp.293-306
    • /
    • 2019
  • In current seismic design codes, various elastic design acceleration spectra are defined considering different seismological and soil characteristics and are widely used tool for calculation of seismic loads acting on structures. Response spectrum analyses directly use the elastic design acceleration spectra whereas time history analyses use acceleration records of earthquakes whose acceleration spectra fit the design spectra of seismic codes. Due to the fact that obtaining coherent structural response quantities with the seismic design code considerations is a desired circumstance in dynamic analyses, the response spectra of earthquake records used in time history analyses had better fit to the design acceleration spectra of seismic codes. This paper evaluates structural response distributions of multi-story reinforced concrete frames obtained from nonlinear time history analyses which are performed by using the scaled earthquake records compatible with various elastic design spectra. Time domain scaling procedure is used while processing the response spectrum of real accelerograms to fit the design acceleration spectra. The elastic acceleration design spectra of Turkish Seismic Design Code 2007, Uniform Building Code 1997 and Eurocode 8 are considered as target spectra in the scaling procedure. Soil classes in different seismic codes are appropriately matched up with each other according to $V_{S30}$ values. The maximum roof displacements and the total base shears of considered frame structures are determined from nonlinear time history analyses using the scaled earthquake records and the results are presented by graphs and tables. Coherent structural response quantities reflecting the influence of elastic design spectra of various seismic codes are obtained.

Footing settlement formula based on multi-variable regression analyses

  • Hamderi, Murat
    • Geomechanics and Engineering
    • /
    • 제17권1호
    • /
    • pp.11-18
    • /
    • 2019
  • The formulas offered so far on the settlement of raft footings provide only a rough estimate of the actual settlement. One of the best ways to make an accurate estimation is to conduct 3-dimensional finite element analyses. However, the required procedure for these analyses is comparatively cumbersome and expensive and needs a bit more expertise. In order to address this issue, in this study, a raft footing settlement formula was developed based on ninety finite element model configurations. The formula was derived using multi-parameter exponential regression analyses. The settlement formula incorporates the dimensions and the elastic modulus of a rectangular raft, vertical uniform pressure and soil moduli and Poisson's ratios up to 5 layers. In addition to this, an equation was offered for the estimation of average deflection of the raft. The proposed formula was checked against 3 well-documented case studies. The formula that is derived from 3D finite element analyses is useful in optimising the raft properties.

앵커 충돌 및 끌림에 의한 원통연결 보호구조물의 최대 응답 해석 (Analyses of the Maximum Response of Cylinders-Connected Protector under Anchor Colliding and Dragging)

  • 우진호;나원배
    • 한국해양공학회지
    • /
    • 제24권5호
    • /
    • pp.81-87
    • /
    • 2010
  • This study presents the results of collision and lift analyses of a cylinders-connected protector under stock anchor colliding and dragging. For the analyses, the terminal velocity of the stock anchor was obtained first, and, then, the velocity was used to calculate the falling distance of the stock anchor in air. In addition, two other falling distances were considered for purposes of comparison. From the finite element analyses, using ANSYS, the maximum responses obtained from the stock anchor colliding and dragging were obtained and compared for different collision distances (3, 5, and 8.83 m) and dragging angles (0, 30, 60, $90^{\circ}$). Then, the maximum displacements and stresses were discussed, along with the strength and dimensions of the protector. Finally, conclusions were made for the maximum responses.

Approximate analyses of reinforced concrete slabs

  • Vecchio, F.J.;Tata, M.
    • Structural Engineering and Mechanics
    • /
    • 제8권1호
    • /
    • pp.1-18
    • /
    • 1999
  • Procedures are investigated by which nonlinear finite element shell analysis algorithms can be simplified to provide more cost effective approximate analyses of orthogonally-reinforced concrete flat plate structures. Two alternative effective stiffness formulations, and an unbalanced force formulation, are described. These are then implemented into a nonlinear shell analysis algorithm. Nonlinear geometry, three-dimensional layered stress analyses, and other general formulations are bypassed to reduce the computational burden. In application to standard patch test problems, these simplified approximate analysis procedures are shown to provide reasonable accuracy while significantly reducing the computational effort. Corroboration studies using various simple and complex test specimens provide an indication of the relative accuracy of the constitutive models utilized. The studies also point to the limitations of the approximate formulations, and identify situations where one should revert back to full nonlinear shell analyses.

Analyses of tapered fgm beams with nonlocal theory

  • Pradhan, S.C.;Sarkar, A.
    • Structural Engineering and Mechanics
    • /
    • 제32권6호
    • /
    • pp.811-833
    • /
    • 2009
  • In the present article bending, buckling and vibration analyses of tapered beams using Eringen non-local elasticity theory are being carried out. The associated governing differential equations are solved employing Rayleigh-Ritz method. Both Euler-Bernoulli and Timoshenko beam theories are considered in the analyses. Present results are in good agreement with those reported in literature. Beam material is considered to be made up of functionally graded materials (fgms). Non-local analyses for tapered beam with simply supported - simply supported, clamped - simply supported and clamped - free boundary conditions are carried out and discussed. Further, effect of length to height ratio on maximum deflections, vibration frequencies and critical buckling loads are studied.

An explicit time-integration method for damped structural systems

  • Pezeshk, S.;Camp, C.V.
    • Structural Engineering and Mechanics
    • /
    • 제3권2호
    • /
    • pp.145-162
    • /
    • 1995
  • A damped trapezoidal rule method for numerical time-integration is presented, and its application in analyses of dynamic response of damped structures is discussed. It is shown that the damped trapezoidal rule method has features that make it an attractive approach for applications in dynamic analyses of structures. Accuracy and stability analyses are developed for the damped single-degree-of-freedom systems. Error analyses are also performed for the Newmark beta method and compared with the damped trapezoidal rule method as a basis for discussion of the relative merits of the proposed method. The procedure is fully explicit and easy to implement. However, since the method is an explicit method, it is conditionally stable. The methodology is applied to several example problems to illustrate its strengths, limitations and inherent simplicity.

내진설계기준의 지반분류체계 및 설계응답스펙트럼 개선을 위한 연구 - (I) 데이터베이스 및 지반응답해석 (Site Classification and Design Response Spectra for Seismic Code Provisions - (I) Database and Site Response Analyses)

  • 조형익;;김동수
    • 한국지진공학회논문집
    • /
    • 제20권4호
    • /
    • pp.235-243
    • /
    • 2016
  • Korea is part of a region of low to moderate seismicity located inside the Eurasian plate with bedrock located at depths less than 30 m. However, the spectral acceleration obtained from site response analyses based on the geologic conditions of inland areas of the Korean peninsula are significantly different from the current Korean seismic code. Therefore, suitable site classification scheme and design response spectra based on local site conditions in the Korean peninsula are required to produce reliable estimates of earthquake ground motion. In this study, site-specific response analyses were performed at more than 300 sites with at least 100 sites at each site categories of $S_C$, $S_D$, and $S_E$ as defined in the current seismic code in Korea. The process of creating a huge database of input parameters - such as shear wave velocity profiles, normalized shear modulus reduction curves, damping curves, and input earthquake motions - for site response analyses were described. The response spectra and site coefficients obtained from site response analyses were compared with those proposed for the site categories in the current code. Problems with the current seismic design code were subsequently discussed, and the development and verifications of new site classification system and corresponding design response spectra are detailed in companion papers (II-development of new site categories and design response spectra and III-Verifications)