• 제목/요약/키워드: Engineering Water Basin

검색결과 1,019건 처리시간 0.036초

SWAT을 이용한 극한 기후변화 시나리오와 유역간 물이동 변화를 고려한 만경강 유역의 미래 수문 및 수질 평가 (Assessment of future stream flow and water quality of Man-gyeong river watershed based on extreme climate change scenarios and inter-basin water transfer change using SWAT)

  • 우소영;이지완;김용원;김성준
    • 한국수자원학회논문집
    • /
    • 제53권8호
    • /
    • pp.605-616
    • /
    • 2020
  • 본 연구에서는 만경강유역(1,602 ㎢)을 대상으로 SWAT(Soil and Water Assessment Tool)을 이용하여 미래 극한 기후변화 시나리오와 유역간 물이동 감소에 따른 유역의 수문 수질 변화를 미래기간(S1: 2010~2039, S2: 2040~2069, S3: 2070~2099)로 구분하여 평가하였다. 이를 위해 유역간 물이동량, 유역내 취수량, 점 오염원 등을 고려하여 SWAT 모형을 구축 후 수위 관측소 2지점(대천, 전주), 수질 관측소 2지점(삼례, 김제)에 대하여 유출량과 부하량을 보정(2012~2014년) 및 검증(2016~2018년)하였다. 검보정 결과 유출량의 평균 R2는 0.7, NSE는 0.51이었으며, SS, T-N, T-P의 평균 R2는 0.72, 0.80, 0.72로 분석되었다. 미래 기후변화에 따른 연평균 유출량은 최대 459 mm/yr 증가하였으며, 연평균 SS, T-N, T-P 부하량은 각각 최대 19,548 ton/yr, 68,748 kg/yr, 13,728 kg/yr 증가하였다. 미래 유역간 물 이동량이 감소하였을 때, 봄과 겨울에 유출량이 감소하였으며, 미래 수질 부하량은 강수량의 영향으로 과거 관측 기간보다 증가하였다. 유출량 감소와 부하량 증가로 인한 수질 악화를 개선하기 위해서는 유역간 물이동이 일정 수준으로 지속되어야 할 것으로 판단된다.

Current situation and possible management practice in future of rural water conservancy in Hai River Basin

  • He, Huining
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2016년도 학술발표회
    • /
    • pp.191-191
    • /
    • 2016
  • Hai River Basin is one of China's major agricultural areas, with a huge rural population. Water conservancy is of great importance in this region. There are three integral elements in managing rural water resources: the consideration of current situation, the adoption of effective management measures, and the projection of future needs. In this study, we provide an in-depth investigation of current water resources situation of Hai River Basin. Five issues are analyzed: (1) the construction of conservancy projects; (2) the irrigation of farmland; (3)the safety of drinking water; (4)the protection of water environment; and (5)the model of management practice. Existing problems are diagnosed and possible solutions are discussed. Finally, a summary is made for managing water resources and meeting future needs.

  • PDF

SWMM 모형을 이용한 비점오염 분석 및 CSO 관리방안 연구 - 부산시 온천천 유역 대상 - (The NPS Analysis and CSO Management Based on SWMM for Oncheon Basin)

  • 신현석;손정화;장종경;손태석;강두기;조덕준
    • 한국물환경학회지
    • /
    • 제25권2호
    • /
    • pp.268-280
    • /
    • 2009
  • Oncheon basin which are located in Busan is divided into 43 basin on the basis of main pipe, constructed with Storm Water Management Model (SWMM). Occurrence situation for Outflow and pollutant loads by long-term continuous rainfall is examined for treatment district and river analysis point of Oncheon basin and a reduction vs effectiveness table for effective CSOs managements is made for each of treatment districts according to each of managements. In case that treatment equipment is located at the discharge point of CSO, treatment efficiency is analysed. It is supposed that treatment equipment have an efficiency on the basis of a concentration and runoff discharge over a critical flow is discharged with it untreated and treating runoff discharge with treatment equipment at each of runoff discharge points and treating it gathered at sewage treatment plant (STP) through trunk sewer is compared for a relative treatment efficiency.

금강지류 유역에서의 유출량과 오염부하량의 상관관계 분석 (An Analysis on the Relationship between Discharge and Pollution Load on the Tributary Basin of Kum River)

  • 정상만;임경호;최정현
    • 한국수자원학회논문집
    • /
    • 제33권5호
    • /
    • pp.527-536
    • /
    • 2000
  • 본 연구는 금강의 주요지류인 미호천 유역에 소재하고 있고 주요 텔레미터 수위표가 위치한 4개의 지점을 선정하여 유출량과 오염부하량의 상관성 분석을 통해 각 소유역의 전체 오염부하량을 추정하였다. 본 연구에서는 대상유역의 유량측정 지점을 중심으로 평·갈수시 및 홍수시의 유출량 및 수질을 분석하였다. 분석된 유출량 및 수질자료를 통해 유역의 수위-유량관계곡선과 농도변화를 분석하였다. 그리고, 유출량과 수질항목간의 상관관계를 분석하였고, 단위면적당 유출량 변화에 따른 단위면적당 오염부하량과의 상관관계 분석을 통해 유역별 상관식을 도출하였다. 이 관계식은 미호천 유역에서의 유출량 변화에 따른 오염부하량의 산정에 이용될 수 있을 것이다.

  • PDF

Hydrological Variability of Lake Chad using Satellite Gravimetry, Altimetry and Global Hydrological Models

  • Buma, Willibroad Gabila;Seo, Jae Young;Lee, Sang-IL
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2015년도 학술발표회
    • /
    • pp.467-467
    • /
    • 2015
  • Sustainable water resource management requires the assessment of hydrological variability in response to climate fluctuations and anthropogenic activities. Determining quantitative estimates of water balance and total basin discharge are of utmost importance to understand the variations within a basin. Hard-to-reach areas with few infrastructures, coupled with lengthy administrative procedures makes in-situ data collection and water management processes very difficult and unreliable. In this study, the hydrological behavior of Lake Chad whose extent, extreme climatic and environmental conditions make it difficult to collect field observations was examined. During a 10 year period [January 2003 to December 2013], dataset from space-borne and global hydrological models observations were analyzed. Terrestial water storage (TWS) data retrieved from Gravity Recovery and Climate Experiment (GRACE), lake level variations from Satellite altimetry, water fluxes and soil moisture from Global Land Data Assimilation System (GLDAS) were used for this study. Furthermore, we combined altimetry lake volume with TWS over the lake drainage basin to estimate groundwater and soil moisture variations. This will be validated with groundwater estimates from WaterGAP Global Hydrology Model (WGHM) outputs. TWS showed similar variation patterns Lake water level as expected. The TWS in the basin area is governed by the lake's surface water. As expected, rainfall from GLDAS precedes GRACE TWS with a phase lag of about 1 month. Estimates of groundwater and soil moisture content volume changes derived by combining altimetric Lake Volume with TWS over the drainage basin are ongoing. Results obtained shall be compared with WaterGap Hydrology Model (WGHM) groundwater estimate outputs.

  • PDF

A study on the diatomaceous earth filtration of recycling basin supernatant in the water treatment plant

  • Shin, Dae-Yewn;Park, Young-Ho;Moon, Ok-Ran;Park, Hymg-Il;Chung, Kyung-Hoon;Chin-Surk ko
    • 한국환경보건학회:학술대회논문집
    • /
    • 한국환경보건학회 2003년도 Challenges and Achievements in Environmental Health
    • /
    • pp.94-97
    • /
    • 2003
  • This study performed the research about the recycling basin supernatant by pre-coat filtration in the D water treatment plant at Gwangju. Choice the prompt conditions with diatomaceous earth filtration which makes contaminant reduced in the basin supernatant. Element disk of candle used in this experiment are pore size 10$\mu\textrm{m}$(R), 20$\mu\textrm{m}$(B) and 40$\mu\textrm{m}$(Y). Diatomaceous earth are cake pore size 3.5$\mu\textrm{m}$(A), 7$\mu\textrm{m}$(B) and 17$\mu\textrm{m}$(C). The filtrate concentrations were from 0.18 to 0.92$\mu\textrm{g}$/1 of Chlorophyll-a. And then, removal rate percentage were from 78.30 to 95.57(R-A). In addition SS 80%, CODMn32% COD 61%, T-N 10% and T-P 39% on the D water treatment plant. The R(40$\mu\textrm{m}$) C(17$\mu\textrm{m}$) process can be substituted of reusing the recycled water of recycling basin supernatant view of capacity and removal rate of filtrate.

  • PDF

대형 성층 호수의 수온과 내부파의 3차원 수치 모델링 (Three-dimensional Numerical Modeling of Water Temperature and Internal Waves in a Large Stratified Lake)

  • 정세웅
    • 한국물환경학회지
    • /
    • 제31권4호
    • /
    • pp.367-376
    • /
    • 2015
  • The momentum and kinetic turbulent energy carried by the wind to a stratified lake lead to basin-scale motions, which provide a major driving force for vertical and horizontal mixing. A three-dimensional (3D) hydrodynamic model was applied to Lake Tahoe, located between California and Nevada, USA, to simulate the dominant basin-scale internal waves in the deep lake. The results demonstrated that the model well represents the temporal and vertical variations of water temperature that allows the internal waves to be energized correctly at the basin scale. Both the model and thermistor chain (TC) data identified the presence of Kelvin modes and Poincare mode internal waves. The lake was weakly stratified during the study period, and produced large amplitude (up to 60 m) of internal oscillations after several wind events and partial upwelling near the southwestern lake. The partial upwelling and followed coastal jets could be an important feature of basin-scale internal waves because they can cause re-suspension and horizontal transport of fine particles from nearshore to offshore. The internal wave dynamics can be also associated with the distributions of water quality variables such as dissolved oxygen and nutrients in the lake. Thus, the basin-scale internal waves and horizontal circulation processes need to be accurately modeled for the correct simulation of the dissolved and particulate contaminants, and biogeochemical processes in the lake.

EU Water Framework Directive-River Basin Management Planning in Ireland

  • Earle, R.;Almeida, G.
    • Environmental Engineering Research
    • /
    • 제15권2호
    • /
    • pp.105-109
    • /
    • 2010
  • The European Union (EU) Water Framework Directive (WFD) (2000/60/EC) was transposed into Irish law by Statutory Instrument Nos. 722 of 2003, 413 of 2005 and 218 of 2009, which set out a new strategy and process to protect and enhance Ireland's water resources and water-dependent ecosystems. The Directive requires a novel, holistic, integrated, and iterative process to address Ireland's natural waters based on a series of six-year planning cycles. Key success factors in implementing the Directive include an in-depth and balanced treatment of the ecological, economic, institutional and cultural aspects of river basin management planning. Introducing this visionary discipline for the management of sustainable water resources requires a solemn commitment to a new mindset and an overarching monitoring and management regime which hitherto has never been attempted in Ireland. The WFD must be implemented in conjunction with a myriad of complimentary directives and associated legislation, addressing such key related topics as flood/drought management, biodiversity protection, land use planning, and water/wastewater and diffuse pollution engineering and regulation. The critical steps identified for river basin management planning under the WFD include: 1) characterization and classification of water bodies (i.e., how healthy are Irish waters?), 2) definition of significant water pressures (e.g., agriculture, forestry, septic tanks), 3) enhancement of measures for designated protected areas, 4) establishment of objectives for all surface and ground waters, and 5) integrating these critical steps into a comprehensive and coherent river basin management plan and associated programme of measures. A parallel WFD implementation programme critically depends on an effective environmental management system (EMS) approach with a plan-do-check-act cycle applied to each of the evolving six-year plans. The proactive involvement of stakeholders and the general public is a key element of this EMS approach.

농업용수 유역 물수지 분석 모델 개발 및 적용 (Development and Application of Water Balance Network Model in Agricultural Watershed)

  • 윤동현;남원호;고보성;김경모;조영준;박진현
    • 한국농공학회논문집
    • /
    • 제66권3호
    • /
    • pp.39-51
    • /
    • 2024
  • To effectively implement the integrated water management policy outlined in the National Water Management Act, it is essential to analyze agricultural water supply and demand at both basin and water district levels. Currently, agricultural water is primarily distributed through open canal systems and controlled by floodgates, yet the utilization-to-supply ratio remains at a mere 48%. In the case of agricultural water, when analyzing water balance through existing national basin water resource models (K-WEAP, K-MODISM), distortion of supply and regression occurs due to calculation of regression rate based on the concept of net water consumption. In addition, by simplifying the complex and diverse agricultural water supply system within the basin into a single virtual reservoir, it is difficult to analyze the surplus or shortage of agricultural water for each field within the basin. There are limitations in reflecting the characteristics and actual sites of rural water areas, such as inconsistencies with river and reservoir supply priority sites. This study focuses on the development of a model aimed at improving the deficiencies of current water balance analysis methods. The developed model aims to provide standardized water balance analysis nationwide, with initial application to the Anseo standard watershed. Utilizing data from 32 facilities within the standard watershed, the study conducted water balance analysis through watershed linkage, highlighting differences and improvements compared to existing methods.