• Title/Summary/Keyword: Engineering Test Satellite

Search Result 457, Processing Time 0.036 seconds

Proposal of an Algorithm for an Efficient Forward Link Adaptive Coding and Modulation System for Satellite Communication

  • Ryu, Joon-Gyu;Oh, Deock-Gil;Kim, Hyun-Ho;Hong, Sung-Yong
    • Journal of electromagnetic engineering and science
    • /
    • v.16 no.2
    • /
    • pp.80-86
    • /
    • 2016
  • This paper proposes the algorithm for forward link adaptive coding and modulation (ACM) and the detailed design for a satellite communication system to improve network reliability and system throughput. In the ACM scheme, the coding and modulation schemes are changed by as much as the channel can provide depending on the quality of the communication link. To implement the forward link ACM system in the Ka-band, channel prediction and modulation/coding decision methods are proposed and simulated. The parameters of the adaptive filter predictor based on the least mean square are optimized, the minimum mean square error of the channel predictor is 0.0608 when step size and the number of filter tap are 0.0001 and 4, respectively. A test-bed is set up to verify the forward link ACM system, and a test is performed using a Ka-band satellite (i.e., Communication, Ocean, and Meteorological Satellite [COMS]). This test verifies that the ACM scheme can increase the system throughput.

THERMAL MODEL CORRELATION OF A GEOSTATIONARY SATELLITE (지구 정지궤도 위성의 열해석 모델 보정)

  • Jun, H.Y.;Kim, J.H.
    • Journal of computational fluids engineering
    • /
    • v.16 no.3
    • /
    • pp.59-65
    • /
    • 2011
  • COMS (Communication, Ocean and Meteorological Satellite) is a geostationary satellite and was developed by KARI for communication, ocean and meteorological observations. COMS was tested under vacuum and very low temperature conditions in order to correlate thermal model and to verify thermal design. The test was performed by using KARI large thermal vacuum chamber. The COMS S/C thermal model was successfully correlated versus the 2 thermal balance test phases. After model correlation, temperatures deviation of all individual units were less than $5^{\circ}C$ and global deviation and standard deviation also satisfied the requirements, less than $2^{\circ}C$ and $3^{\circ}C$. The final flight prediction was performed by using the correlated thermal model.

Acoustic test of the payload fairing of Korea satellite launch vehicle (소형 위성 발사체의 페이로드 페어링부에 대한 음향 가진 시험)

  • Park, S.H.;Seo, S.H.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.220-223
    • /
    • 2007
  • Acoustic test of the payload fairing of Korea satellite launch vehicle was conducted to verify the performance of acoustic protection system installed inside the payload fairing. This paper briefly introduces the acoustic test procedures and its results. Overall 148 dB acoustic loads were exerted on the payload fairing structures which mated with the upper stage structure of the launch vehicle. In order to verify the increase of insertion loss by the acoustic protection system, two kinds of test were performed. One is conducted with acoustic protection system and the other without acoustic protection system. Internal acoustic loads as well as external ones were measured and the measured insertion losses were compared with the requirement. The results showed that the acoustic protection system increases the insertion loss by more than 6 dB above 125 Hz. They also indicated that some design modification of Helmholtz resonator array is required to increase the insertion loss at a cavity resonant frequency.

  • PDF

Determination excitation spectrum for the sinusoidal vibration test of the small satellite launch vehicle (소형 위성 발사체의 정현파 진동 시험을 위한 가진 입력 결정)

  • Park, S.H.;Youn, S.H.;Seo, S.H.;Jeong, H.K.;Jang, Y.S.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.193-196
    • /
    • 2006
  • Vibration overtests have been common problems in aerospace industry. A test item can be overtested at its resonances when it is excited by the traditional spectrum enveloping peaks in the field acceleration spectrum. This paper introduces the method of modifying the excitation specification to alleviate the overtesting problem. A vibration analysis was performed to estimate interface forces and acceleration responses. A finite element model that was verified by an extensive modal test enabled us to shape the acceleration input accurately The produced notched input will be used in the sinusoidal vibration test of the small satellite launch vehicle.

  • PDF

Performance Evaluation of Hinge Driving Separation Nut-type Holding and Releasing Mechanism Triggered by Nichrome Burn Wire

  • LEE, Myeong-Jae;LEE, Yong-Keun;OH, Hyun-Ung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.4
    • /
    • pp.602-613
    • /
    • 2015
  • As one of the mission payloads to be verified through the cube satellite mission of Cube Laboratory for Space Technology Experimental Project (STEP Cube Lab), we developed a hinge driving separation nut-type holding and releasing mechanism. The mechanism offers advantages, such as a large holding capacity and negligible induced shock, although its activation principle is based on a nylon cable cutting mechanism triggered by a nichrome burn wire generally used for cube satellite applications for the purpose of holding and releasing onboard appendages owing to its simplicity and low cost. The basic characteristics of the mechanism have been measured through a release function test, static load test under qualification temperature limits, and shock measurement test. In addition, the structural safety and operational functionality of the mechanism module under launch and on-orbit environments have been successfully demonstrated through a vibration test and thermal vacuum test.

Development of Shock Test Measurement/Analysis Program for NEXTSat-1 (차세대 소형위성 1호 충격시험 계측/분석 프로그램 개발)

  • Seong, Tae-hyeon;Jin, Jaehyun;Kim, Sang-kyun
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.2
    • /
    • pp.34-40
    • /
    • 2016
  • A satellite is exposed to various impact environment until orbit entry. It is particularly undergoing the biggest impact by pyro shock, which is generated when the launch vehicle stages are separated or the satellite is separated from the launch vehicle. In this paper, due to the fact that the pyro shock is prerequisite for performing the test and verification on the ground, we developed an air-gun type shock tester for NEXTSat-1 shock test at the KAIST SaTReC along with the development of program introduced by LabVIEW software. The program operated in shock tester is consist of data measurement and analysis with the convenient implementation of user interface and its easy modification of the code.

THERMAL BALANCE MODELLING AND PREDICTION FOR A GEOSTATIONARY SATELLITE (정지궤도 위성의 열평형 시험 모델링 및 예비 예측)

  • Jun, Hyoung-Yoll;Kim, Jung-Hoon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.142-147
    • /
    • 2009
  • COMS (Communication, Ocean and Meteorological Satellite) is a geostationary satellite and has been developing by KARI for communication, ocean and meteorological observations. It will be tested under vacuum condition and very low temperature in order to verify thermal design of COMS. The test will be performed by using KARI large thermal vacuum chamber, which was developed by KARI, and the COMS will be the first flight satellite tested in this chamber. The purposes of thermal balance test are to correlate analytical model used for design evaluation and predicting temperatures, and to verify and adjust thermal control concept. KARI has plan to use heating plates to simulate space hot condition especially for radiator panels such as north and south panels. They will be controlled from 90K to 273K by circulating GN2 and LN2 alternatively according to the test phases, while the shroud of the vacuum chamber will be under constant temperature, 90K, during all thermal balance test. This paper presents thermal modelling including test chamber, heating plates and the satellite without solar array wing and Ka-band reflectors and discusses temperature prediction during thermal balance test.

  • PDF

The Interface Test between LEO Satellite and Ground Station (저궤도위성과 지상국 간 접속 검증 시험)

  • Kwon, Dong-Young;Jung, Ok-Chul;Kim, HeeSub
    • Aerospace Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.49-56
    • /
    • 2012
  • LEO Satellite performs the operations and missions by FSW(Flight Software) after separation from a launch vehicle. Many of the operations by FSW are automatically conducted by the algorithms of FSW. In the case of the IAC(Initial Activation and Checkout) operations, a mission scheduling, an orbit transition, etc, however, a decision and a control of the satellite operators or manufacturers are required in order to operate the satellite safely. For this, the wireless communication channel between a satellite and a ground station should be prepared to receive telemetries and to transmit tele-commands for controlling FSW properly. Therefore, the verification of the interface between KOMPSAT-3 and a ground station is essential. This verification test is named the satellite end-to-end test. In this paper, we show the design process of the satellite end-to-end test and test results.

ENVIRONMENTAL TEST OF THE EQM PAYLOAD SYSTEM FOR THE COMMUNICATIONS AND BROADCASTING SATELLITE

  • Choi Jang Sup;Park Jong Heung;Eun Jong Won;Lee Seong Pal
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.10b
    • /
    • pp.368-371
    • /
    • 2004
  • ETRI has developed the EQM (Engineering Qualification model) payload system for the communications and broadcasting satellite (CBS) with Korean local companies. This paper describes a series of environmental tests such as vibration, thermal/thermal vacuum, and EMC tests. All the development processes including the design, implementation, integration and workmanship were verified and evaluated by these tests. The results of the functional tests and the compliance to the requirements are also presented. The technologies and heritage obtained from this development will be applied to the development of the payload system for the Korean communication satellite in the near future.

  • PDF

Mission Operation Capability Verification Test for Low Earth Orbit(LEO) Satellite by Utilizing Interface Environment between LEO Satellite and Ground Station (저궤도 위성과 지상국간 접속 환경을 활용한 임무수행능력 지상 검증 시험)

  • Lee, Sang-Rok;Koo, In-Hoi;Lim, Seong-Bin
    • Aerospace Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.142-149
    • /
    • 2014
  • After launch of Low Earth Orbit(LEO) satellite, Initial Activation Checkout(IAC) and Calibration and Validation(Cal & Val) procedure are performed prior to enter normal operation phase. During normal operation phase, most of the time is allocated for mission operation except following up measures to anomaly and orbit maintenance. Since mission operation capability is key indicator for success of LEO satellite program and consistent with promotion purpose of LEO satellite program, reliability should be ensured by conducting through test. In order to ensure reliability by examining the role of LEO satellite and ground station during ground test phase, realistic test scenario that is similar to actual operation conditions should be created, and test that aims to verify full mission cycle should be performed by transmitting created command and receiving image and telemetry data. This paper describes the test design and result. Consideration items for test design are described in detail and result of designed test items are summarized.