• Title/Summary/Keyword: Engineering Plastics

Search Result 638, Processing Time 0.024 seconds

Triboelectrostatic Separation System for Separation of PVC and PS Materials Using Fluidized Bed Tribocharger

  • Lee, Jae-Keun;Shin, Jin-Hyouk;Hwang, Yoo-Jin
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.10
    • /
    • pp.1336-1345
    • /
    • 2002
  • A triboelectrostatic separation system using a fluidized bed tribocharger for the removal of PVC material in the mixture of PVC/PS plastics is designed and evaluated as a function of electric field strength, air flow rate, and the mixing ratio of two-component mixed plastics. It consists of a fluidized-bed tribocharger, a separation chamber, a collection chamber and a controller. PVC and PS particles can be imparted negative and positive surface charges, respectively, due to the difference in the work function values of plastics suspended in the fluidized-bed tribocharger, and can be separated by passing them through an external electric field. Experimental results show that separation efficiency is strongly dependent on the electric Deld strength and particle mixing ratio. In the optimum conditions of 150 Ipm air flow rate and 2.6 kV/cm electric field strength a highly concentrated PVC (99.1%) can be recovered with a yield of more than 99.2% from the mixture of PVC and PS materials for a single stage of processing.

Seismic Performance Evaluation of Structure Reinforced with Precast-Buckling Restrained Brace of Engineering Plastics (공업용 플라스틱의 선조립형 비좌굴가새로 보강한 건축물의 내진 성능 평가)

  • Kim, Yu-Seong;Park, Byung-Tae;Lee, Joon-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.21 no.4
    • /
    • pp.31-38
    • /
    • 2021
  • The precast-buckling restrained braces(PC-BRB) reinforced with engineering plastics that can compensate for the disadvantages in the manufacturing process of the existing buckling restrained brace. In this study, to examine the applicability of PC-BRB to actual structures, example structures similar to school facilities were selected and the reinforcement effect was analyzed analytically according to the damping design procedure of PC-BRB. Load-displacement curve through the incremental loading test appeared similar to the bilinear curve. Applying test result, Analytical model of PC-BRB model was constructed and applied to the example structure. As a result of the analysis, the PC-BRB showed stable hysteresis behavior without lowering the strength, and the inter story drift ratio and the shear force were reduced due to the damping effect. In addition, the reduction ratio of the shear force was similar to the reduction ratio assumed when designing the damping device.

Biodegradation of Low-Density Polyethylene by Acinetobacter guillouiae PL211 Isolated from the Waste Treatment Facility

  • Ye-Jin Kim;Jang-Sub Lee;Jeong-Ann Park;Hyun-Ouk Kim;Kwang Suk Lim;Suk-Jin Ha
    • Microbiology and Biotechnology Letters
    • /
    • v.52 no.2
    • /
    • pp.189-194
    • /
    • 2024
  • Plastics are consistently produced owing to their practicality and convenience. Unmanaged plastics enter the oceans, where they adversely impact marine life, and their degradation into nano-plastics due to sunlight and weathering is of concern for all living beings. Nano-plastics affect humans via the food chain, emphasizing the necessity for effective solutions. Microbial biodegradation has been suggested as a solution, offering the advantages of minimal environmental impact and the utilization of decomposition byproducts in microbial metabolic pathways. In this study, fifty-seven bacterial strains were isolated and identified from a waste-treatment facility. Cultivation in a minimum medium with low-density polyethylene (LDPE) beads as the sole carbon source resulted in the selection of the LDPE-degrading strain Acinetobacter guillouiae PL211. The selected strain was cultured at high cell density with LDPE as a carbon source, and Fourier transform infrared (FT-IR) analysis confirmed chemical changes on the LDPE bead's surface. Field-emission scanning electron microscopy (FE-SEM) analysis revealed substantial biodegradation of the LDPE surface. These results demonstrated the capability of A. guillouiae PL211 to biodegrade LDPE beads. This discovery demonstrates the potential of an environmentally friendly process to addressing polyethylene waste issues.

Design and Fabrication of Heat Sink for Vehicle LED Headlamp Using Thermally-Conductive Plastics (열전도성 플라스틱을 적용한 자동차 LED 전조등 방열구조 연구)

  • Kim, Hyeong Jin;Lee, Dong Kyu;Park, Hyun Jung;Yang, Hoe Seok;Na, Pil Sun;Kwak, Joon Seop
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.8
    • /
    • pp.544-549
    • /
    • 2015
  • Since LEDs (light emitting diodes) have many advantages as a light source in vehicle headlamp, such as good reliability, energy and space saving, and flexible headlamp design. On the other hand, the dependence of its performance and life on temperature have great influence on its practical use. In this study, design and fabrication of heat sink for vehicle LED headlamp were performed using thermally-conductive plastics. This study focused on the effective heat sink structure with limited space in the vehicle LED headlamp. We designed two different prototype of heat sink by thermal simulation using SolidWorks program, which had excellent temperature characteristics. The two different prototype of heat sink were fabricated by injection molding with thermally-conductive plastics. The results showed that LED $T_j$ (junction temperature) of sample B (model 1) and sample C (model 1, 2) was below then $165^{\circ}C$ when applying the thermally-conductive plastics in heat sink of vehicle LED headlamp.

Reinforcement Effect of Reinforced Concrete Beams Strengthened with Grid-type Carbon Fiber Plastics (격자형 탄소섬유로 보강한 R/C보의 보강효과)

  • Jo, Byung-Wan;Tae, Ghi-Ho;Kwon, Oh-Hyuk
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.3
    • /
    • pp.377-385
    • /
    • 2003
  • Flexural characteristics of the R.C beams strengthened with newly-developed grid-type carbon fiber plastics(CFRP-GRIDS) were investigated. The tests were conducted under the four-points load to the failure to investigate the strengthening effects of CFRP-GRIDS on the beams. Results showed that initial cracks appeared in the boundary layers of fibers embedded in the newly-placed mortar concrete slowly progressed to the direction of supports and showed fracture of fiber plastics and brittle failure of concrete in compression in sequence after the yielding of steel reinforcement. Accordingly, the appropriate area of Grid-type carbon-fiber plastics in the strengthening design of deteriorated RC structures should be limited and given based on the ultimate strength design method to avoid the brittle failure of concrete structures.

A Study on the Cutting Characteristics of Glass Fiber Reinforced Plastics by Tool Materials and Type (유리섬유강화 플라스틱의 공구재질 및 형상에 따른 절삭특성에 관한 연구)

  • An, Sang-Ook;Noh, Sang-Lai
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.4
    • /
    • pp.1216-1224
    • /
    • 1996
  • In the use of glass fiber reinforced plastics it is often necessary to cutting the components, but the cutting GFRP is often made difficult by the delamination of composites and the short tool life. In this paper, the machinability of GFRP by mean of tool materials and type was experimentally investigated. By proper selection of cutting tool material and type excellent machining of this workpiece is achieved. The surface quality relate closely with the feed rate and cutting tools.

A Study on the Characteristic, Types and Mechanism of the Flame Retardant (방염제의 특성 및 메카니즘에 관한 연구)

  • Choi, Don-Mook
    • Journal of Korean Institute of Fire Investigation
    • /
    • v.7 no.1
    • /
    • pp.83-90
    • /
    • 2005
  • To minimize the loss of life and economic about the underground cable fire disaster and ship fire, fabricated with plastics, the government makes effort and regulations. Therefore, the theories, mechanism and environmental effect of the flame retardant was described in this study.

  • PDF

Creep Characteristic of the Polyethylene(PE) at Various Stresses and Temperatures (온도와 응력에 따른 폴레에틸렌(PE)의 크리프특성)

  • Kang, Suk-Choon;Lee, Young-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.7
    • /
    • pp.99-104
    • /
    • 2009
  • Creep characteristic is an important failure mechanism when evaluating engineering materials that are soft as polymers or used as mechanical elements at high temperatures. One of the popular thermo-elastic plastics, Polyethylene(PE) which is used broadly for engineering purposes, as it has good properties and merits compared to other plastics, was studied for creep characteristic at various level of stresses and temperatures. From the experimental results, the creep limit of PE at room temperature is 75% of tensile strength. Also the creep limits decreased exponentially as the temperatures increased, up to 50% of the melting point. Also the secondary stage among the three creep stages was nonexistent nor was there any rupture failure which occurred for many metals.

Separation of PET and PS with Air Separation

  • Nakazawa, Hiroshi;Kudo, Yasuo;Sato, Hayato
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.727-729
    • /
    • 2001
  • The air separation of PET (Polyethylene terephthalate) and PS(Polystyrene) was carried out by taking advantage of the different abrasive resistance of two plastics. PET bottles and PS packages were shredded to small square pieces $(5{\times}5mm)$. Both plastic shreds were treated by a shear-type crusher. The PET shreds were bent and twisted by the crush so that they were blown up easily, but the PS shreds were not. After the crush of mixture of both plastics, air separation experiments were carried out using four types of air separators. The number and location of the baffle attached to them are different. With the separator with a baffle attached at the upper part, PET recoveries for the crushing time of 30, 60 and 90sec were 67, 98 and 99% respectably at the air flow rate of 3.5m/s, whereas PS recoveries were null regardless of the crushing time.

  • PDF