• Title/Summary/Keyword: Engineering M&S

Search Result 15,520, Processing Time 0.054 seconds

Characterization of Fine Dust Collection Using a Filter Ventilation (환기장치와 필터를 활용한 미세먼지 제거특성 조사)

  • Jeon, Tae-Yeong;Kim, Jae-Yong
    • Applied Chemistry for Engineering
    • /
    • v.26 no.2
    • /
    • pp.229-233
    • /
    • 2015
  • In this study, we examined the removal characteristics of suspended particulate matters which are one of carcinogens to cause lung cancer. The fine dust capture by a pilot scale filtration system depends on several important variables such as humidity, initial fine dust injection volume, and flow rate. The average concentration of particulate matters in the test chamber decreased, but the ultimate collection efficiency did not change during the filtration under high humidity, compared to those of using ambient conditions The initial injection amount of fine dust did not influence the particle capturing efficiency. When the flow rate reduced from 0.6 m/s to 0.3 m/s, the dust collection time increased approximately 1.4 times. Among all variables tested, the flow rate showed the most significant effect on the removal efficiency of fine particulate matter.

Wear Behaviors of Gas Atomized and Extruded Hypereutectic Al-Si Alloys (가스분무 공정에 의한 과공정 Al-Si 합금 분말 압출재의 마모 거동)

  • Jin Hyeong-Ho;Nam Ki-Young;Kim Yong-Jin;Park Yong-Ho;Yoon Seog-Young
    • Journal of Powder Materials
    • /
    • v.13 no.4 s.57
    • /
    • pp.250-255
    • /
    • 2006
  • Wear behaviors of gas atomized and extruded Al-Si alloys were investigated using the dry sliding wear apparatus. The wear tests were conducted on Al-Si alloy discs against cast iron pins and vice versa at constant load of 10N with different sliding speed of 0.1, 0.3, 0.5m/s. In the case of Al-Si alloy discs slid against the cast iron pins, the wear rate slightly increased with increasing the sliding speed due to the abrasive wear occurred between Al-Si alloy discs and cast iron pins. Conversely, in the case of cast iron discs against Al-Si alloy pins, the wear rate decreased with increasing the sliding speed up to 0.3m/s. However, the wear rate increased with increasing the sliding speed from 0.3m/s to 0.5m/s. It could be due to adhesive wear behavior and abrasive wear behavior_between cast iron discs and Al-Si alloy pins.

A Rail-to-Rail Input 12b 2 MS/s 0.18 μm CMOS Cyclic ADC for Touch Screen Applications

  • Choi, Hee-Cheol;Ahn, Gil-Cho;Choi, Joong-Ho;Lee, Seung-Hoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.9 no.3
    • /
    • pp.160-165
    • /
    • 2009
  • A 12b 2 MS/s cyclic ADC processing 3.3 Vpp single-ended rail-to-rail input signals is presented. The proposed ADC demonstrates an offset voltage less than 1 mV without well-known calibration and trimming techniques although power supplies are directly employed as voltage references. The SHA-free input sampling scheme and the two-stage switched op-amp discussed in this work reduce power dissipation, while the comparators based on capacitor-divided voltage references show a matched full-scale performance between two flash sub ADCs. The prototype ADC in a $0.18{\mu}m$ 1P6M CMOS demonstrates the effective number of bits of 11.48 for a 100 kHz full-scale input at 2 MS/s. The ADC with an active die area of $0.12\;mm^2$ consumes 3.6 m W at 2 MS/s and 3.3 V (analog)/1.8 V (digital).

Characterization of Glycerol Dehydrogenase from Thermoanaerobacterium thermosaccharolyticum DSM 571 and GGG Motif Identification

  • Wang, Liangliang;Wang, Jiajun;Shi, Hao;Gu, Huaxiang;Zhang, Yu;Li, Xun;Wang, Fei
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.6
    • /
    • pp.1077-1086
    • /
    • 2016
  • Glycerol dehydrogenases (GlyDHs) are essential for glycerol metabolism in vivo, catalyzing its reversible reduction to 1,3-dihydroxypropranone (DHA). The gldA gene encoding a putative GlyDH was cloned from Thermoanaerobacterium thermosaccharolyticum DSM 571 (TtGlyDH) and expressed in Escherichia coli. The presence of Mn2+ enhanced its enzymatic activity by 79.5%. Three highly conserved residues (Asp171, His254, and His271) in TtGlyDH were associated with metal ion binding. Based on an investigation of glycerol oxidation and DHA reduction, TtGlyDH showed maximum activity towards glycerol at 60℃ and pH 8.0 and towards DHA at 60℃ and pH 6.0. DHA reduction was the dominant reaction, with a lower Km(DHA) of 1.08 ± 0.13 mM and Vmax of 0.0053 ± 0.0001 mM/s, compared with glycerol oxidation, with a Km(glycerol) of 30.29 ± 3.42 mM and Vmax of 0.042 ± 0.002 mM/s. TtGlyDH had an apparent activation energy of 312.94 kJ/mol. The recombinant TtGlyDH was thermostable, maintaining 65% of its activity after a 2-h incubation at 60℃. Molecular modeling and site-directed mutagenesis analyses demonstrated that TtGlyDH had an atypical dinucleotide binding motif (GGG motif) and a basic residue Arg43, both related to dinucleotide binding.

PEFP VACUUM CONTROL SYSTEM

  • Song, Y.G.;Hong, I.S.;Choi, H.M.;Cho, Y.S.
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 2005.10a
    • /
    • pp.921-922
    • /
    • 2005
  • PDF

Fabrication and Characterization of $0.2\mu\textrm{m}$ InAlAs/InGaAs Metamorphic HEMT's with Inverse Step-Graded InAlAs Buffer on GaAs Substrate

  • Kim, Dae-Hyun;Kim, Sung-Won;Hong, Seong-Chul;Paek, Seung-Won;Lee, Jae-Hak;Chung, Ki-Woong;Seo, Kwang-Seok
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.1 no.2
    • /
    • pp.111-115
    • /
    • 2001
  • Metamorphic InAlAs/InGaAs HEMT are successfully demonstrated, exhibiting several advantages over conventional P-HEMT on GaAs and LM-HEMT on InP substrate. The strain-relaxed metamorphic structure is grown by MBE on the GaAs substrate with the inverse-step graded InAlAs metamorphic buffer. The device with 40% indium content shows the better characteristics than the device with 53% indium content. The fabricated metamorphic HEMT with $0.2\mu\textrm{m}$T-gate and 40% indium content shows the excellent DC and microwave characteristics of $V_{th}-0.65V,{\;}g_{m,max}=620{\;}mS/mm,{\;}f_T120GHZ{\;}and{\;}f_{max}=210GHZ$.

  • PDF