• Title/Summary/Keyword: Engineering Exploration

Search Result 1,458, Processing Time 0.053 seconds

Development and Application of Large-diameter Cut-hole Exploration System for Assessment of the Geological Condition beyond NATM Tunnel Face (NATM 터널의 굴착면 전방 지질 평가를 위한 대구경 심발공 탐사 시스템 개발 및 적용 사례)

  • Kim, Minseong;Jung, Jinhyeok;Lee, Jekyum;Park, Minsun;Bak, Jeonghyeon;Lee, Sean Seungwon
    • Tunnel and Underground Space
    • /
    • v.31 no.1
    • /
    • pp.1-9
    • /
    • 2021
  • Recently, the development of underground space has been accelerated with rapid urbanization, and it is significantly important for safe construction to accurately understand the geological conditions of the section when excavating rocks. In this paper, a boring alignment tracking and geological exploration system have been developed to identify the geological conditions beyond the excavation face by utilizing a MSP method that bores a large empty hole to reduce blast-induced vibration. The major advantage of the proposed exploration system is that we can obtain the ground condition of 50 m ahead of the excavation face through exploration along blast cut-holes drilled for the NATM tunnel construction. In addition, we introduce several case histories regarding the assessment of the geological conditions beyond the tunnel face by monitoring the inside of large empty holes using the proposed hole exploration system.

A Case Study on LRO Flight Software for Korean Lunar Exploration Program (한국형 달 탐사 프로그램을 위한 LRO 비행 소프트웨어 사례 분석)

  • Kim, Changkyoon;Kwon, Jae-Wook;Moon, Sang-Man;Kim, In-Kyu;Min, Seung Yong
    • Journal of Aerospace System Engineering
    • /
    • v.9 no.4
    • /
    • pp.73-80
    • /
    • 2015
  • For Korean first lunar exploration program, KARI(Korea Aerospace Research Institute) has been researching in various fields and investigating cases of abroad lunar exploration spacecrafts. In the field of the flight software, KARI has been analysing some cases such as NASA LRO, and this paper describes the result of the case study on LRO flight software.

A Study on Variation of Orbital Elements according to Variation of Target Value of Lunar Orbit Insertion (달 궤도 진입 목표값 변화에 따른 궤도요소 변화 연구)

  • Choi, Su-Jin;Kim, In-Kyu;Moon, Sang-Man;Min, SeungYong;Rew, Dong-Young
    • Journal of Aerospace System Engineering
    • /
    • v.9 no.4
    • /
    • pp.16-22
    • /
    • 2015
  • Korea Aerospace Research Institute(here after KARI) has a plan to launch experimental lunar orbiter in 2018, and lunar orbiter and lander in 2020. There are several ways to go to the moon. Which one is direct transfer trajectory and another one is phasing loop transfer trajectory and the other one is WSB trajectory. Regardless of the transfer trajectories, LOI maneuver is the most important maneuver of all mission sequences because if this burn is failed, it is too difficult to get into the lunar orbit in the future. This paper describes first LOI target value of foreign lunar orbiters and analyzes orbital variations of experimental lunar orbiter according to various target values. By analyzing the variation of orbiter parameter after first LOI, proper orbital period for LOI target value are recommended to meet the inclination, apoapsis and periapsis altitude constraints.

The Impact of Exploration and Exploitation Activities and Market Agility on the Relationship between Big Data Analytics Capability and Firms' Performance (빅 데이터 분석능력과 기업 성과 간의 관계에서 혁신 및 개선 활동과 시장 민첩성의 영향)

  • Jung, He-Kyung;Boo, Jeman
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.3
    • /
    • pp.150-162
    • /
    • 2022
  • This study investigated the impact of the latest developments in big data analytics capabilities (BDAC) on firm performance. The BDAC have the power to innovate existing management practices. Nevertheless, their impact on firm performance has not been fully is not yet fully elucidated. The BDAC relates to the flexibility of infrastructure as well as the skills of management and firm's personnel. Most studies have explored the phenomena from a theoretical perspective or based on factors such as organizational characteristics. However, this study extends the flow of previous research by proposing and testing a model which examines whether organizational exploration, exploitation and market agility mediate the relationship between the BDAC and firm performance. The proposed model was tested using survey data collected from the long-term employees over 10 years in 250 companies. The results analyzed through structural equation modeling show that a strong BDAC can help improve firm performance. An organization's ability to analyze big data affects its exploration and exploitation thereby affecting market agility, and, consequently, firm performance. These results also confirm the powerful mediating role of exploration, exploitation, and market agility in improving insights into big data utilization and improving firm performance.

Multi-Objective Design Exploration for Multidisciplinary Design Optimization Problems

  • Obayashi Shigeru;Jeong Shinkyu;Chiba Kazuhisa
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.1-10
    • /
    • 2005
  • A new approach, Multi-Objective Design Exploration (MODE), is presented to address Multidisciplinary Design Optimization (MDO) problems by CFD-CSD coupling. MODE reveals the structure of the design space from the trade-off information and visualizes it as a panorama for Decision Maker. The present form of MODE consists of Kriging Model, Adaptive Range Multi Objective Genetic Algorithms, Analysis of Variance and Self-Organizing Map. The main emphasis of this approach is visual data mining. An MDO system using high fidelity simulation codes, Navier-Stokes solver and NASTRAN, has been developed and applied to a regional-jet wing design. Because the optimization system becomes very computationally expensive, only brief exploration of the design space has been performed. However, data mining result demonstrates that design knowledge can produce a good design even from the brief design exploration.

  • PDF

Trends in Development of Micro Rovers for Planetary Exploration (행성탐사용 (초)소형 로버 개발 동향)

  • Keon-Woo Koo;Hae-Dong Kim
    • Journal of Space Technology and Applications
    • /
    • v.3 no.3
    • /
    • pp.213-228
    • /
    • 2023
  • Unmanned exploration rovers serve as tools for investigating mineral resources, mining, and carrying out various scientific on celestial bodies beyond Earth, acting on behalf of humans. Recently, not only the United States but also other countries such as Japan, India and China have been attempting to develop unmanned planetary exploration rovers for space development or have successfully operated them on other celestial bodies. This has accelerated the enthusiasm for space exploration and development. However, the development and operation of unmanned rovers for planetary exploration still entail significant costs and high risks, making it difficult for universities or companies to undertake such project independently without the guidance of financial backing from government entities. In this paper, we describe the recent development trends of micro-rovers, known as Cube Rovers, which inherit the concepts and definitions of traditional Cube Sat. We also introduce the potential and expectations of Cube Rovers through the necessity of their development and ongoing planetary exploration cases.

A Modified Multiple Depth First Search Algorithm for Grid Mapping Using Mini-Robots Khepera

  • El-Ghoul, Sally;Hussein, Ashraf S.;Wahab, M. S. Abdel;Witkowski, U.;Ruckert, U.
    • Journal of Computing Science and Engineering
    • /
    • v.2 no.4
    • /
    • pp.321-338
    • /
    • 2008
  • This paper presents a Modified Multiple Depth First Search algorithm for the exploration of the indoor environments occupied with obstacles in random distribution. The proposed algorithm was designed and implemented to employ one or a team of Khepera II mini robots for the exploration process. In case of multi-robots, the BlueCore2 External Bluetooth module was used to establish wireless networks with one master robot and one up to three slaves. Messages are sent and received via the module's Universal Asynchronous Receiver/Transmitter (UART) interface. Real exploration experiments were performed using locally developed teleworkbench with various autonomy features. In addition, computer simulation tool was also developed to simulate the exploration experiments with one master robot and one up to ten slaves. Computer simulations were in good agreement with the real experiments for the considered cases of one to one up to three networks. Results of the MMDFS for single robot exhibited 46% reduction in the needed number of steps for exploring environments with obstacles in comparison with other algorithms, namely the Ants algorithm and the original MDFS algorithm. This reduction reaches 71% whenever exploring open areas. Finally, results performed using multi-robots exhibited more reduction in the needed number of exploration steps.