• Title/Summary/Keyword: Engineering College

Search Result 25,767, Processing Time 0.047 seconds

A Simplified Model for Compliance Determination of the Moving-Actuator Type Totally Implantable Artificial Heart

  • Park, S.K.;Choi, W.W.;Ahn, J.M.;Kim, S.J.;Choi, J.S.;Jo, Y.H.;Om, K.S.;Lee, J.J.;Kim, H.C.;Choi, M.J.;Min, B.G.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.05
    • /
    • pp.82-83
    • /
    • 1996
  • In this paper, we present a simplified model for complicance determination of the moving-actuator type totally implantable artificial heart (TAH). The modeling equations are derived from the mechanics and geometry of the TAH components. The interventricular pressure and volume are computed for determining the compliance of the interventricular space using this model. The model is capable of generating realistic hemodynamic variables such as the left atrial pressure and interventricular pressure and is proved to be acceptable. This model can be used as an initial step for analyzing characteristics of the moving-actuator type TAH.

  • PDF

Liquid Crystal Alignment Effects on Nitrogen-doped Diamond like Carbon Layer by Ion Beam Alignment Method

  • Han, Jeong-Min;Choi, Sung-Ho;Kim, Byoung-Yong;Han, Jin-Woo;Kim, Jong-Hwan;Kim, Young-Hwan;Hwang, Jeoung-Yeon;Lee, Sang-Keuk;Ok, Chul-Ho;Seo, Dae-Shik
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.1
    • /
    • pp.46-50
    • /
    • 2007
  • We have studied the nematic liquid crystal (NLC) alignment effects on a nitrogen-doped diamond-like carbon (NDLC) thin film layer with ion beam irradiation. The pretilt angle for NLC on the NDLC surface with ion beam exposure was observed below 1 degree. Also, we had the good LC alignment characteristics on the NDLC thin films with ion beam exposure of 1800 eV. In thermal stability experiments, the alignment defect of the NLC on the NDLC surface with ion beam irradiation above annealing temperature of $250^{\circ}C$ can be observed. Therefore, the good thermal stability and LC alignment for NLC by ion beam aligned NDLC thin films can be achieved.

A Study on Angle Measurements Using an Optical Fiber (광섬유를 이용한 각도 측정 연구)

  • Kim, A-Hee;Kim, Ji-Sun;Oh, Han-Byeol;Kim, Jun-Sik;Goh, Bong-Jun;Lee, Eun-Suk;Jung, Hyon-Chel;Choi, Ju-Hyeon;Baek, Jin-Young;Jun, Jae-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.4
    • /
    • pp.605-611
    • /
    • 2015
  • The measurement and analysis of angular change have been studied in many fields. This study developed an angle measurement technique with optical fiber and photodiode. The position and attached angle of photodiode were investigated to find the proper combination of parameter. The results showed that the increased measuring range was achieved when the position of detector was away from the center of rotation. Inverse mathematical model was used to obtain angular changes with an optical fiber. The applications of this study include in optical sensor, joint angle measurement, and sport science.

Development of a Respiration Sensor Using Plastic Optical Fiber (플라스틱 광섬유를 이용한 호흡센서의 개발)

  • Yoo, Wook-Jae;Baek, Ji-Yun;Cho, Dong-Hyun;Jang, Kyoung-Won;Seo, Jeong-Ki;Heo, Ji-Yeon;Lee, Bong-Soo;Cho, Young-Ho;Park, Byung-Gi;Moon, Joo-Hyun
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.6
    • /
    • pp.489-494
    • /
    • 2009
  • In this study, we fabricated a plastic optical fiber based sensor which can monitor the respiration of a patient. The circumference changes of the abdomen were measured using a mirror, a light source and optical detectors because the circumferences of the abdomen could be varied with respiration. The intensity of the reflected lights were measured according to the changes of distance between mirror and plastic optical fiber connected to a light source and a photodiode-amplifier system using a Y-coupler. The respiration signals of fiber-optic sensor system were compared with those of the respiratory and temperature transducers of the $BIOPAC^{(R)}$ system. It is expected that a fiber-optic respiration sensor could be developed for real time respiration monitoring during MRI procedure based on this study.