• Title/Summary/Keyword: Engine speed

Search Result 1,999, Processing Time 0.034 seconds

An Experimental Study on the Effect of Valve Train Design Parameters on the Diesel Engine Valve Rotation (디젤엔진의 밸브회전에 미치는 밸브트레인 설계변수들의 영향에 관한 실험적 연구)

  • Kim, Do-Joong;Jeong, Young-Jong;Lee, Jung-Hee
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.6
    • /
    • pp.1-8
    • /
    • 2004
  • In this paper we present the effects that valve train design parameters and operating conditions have on the valve rotation properties of a diesel engine. Rotation of intake and exhaust valves are very closely related to the long term durability of diesel engines. of the valves do not rotate even at a rated engine speed, it causes the uneven wear of the valve seat and valve head contact area, which eventually shortens the engine life. Because the rated speed of a diesel engine is relatively lower than that of a gasoline engine, the operating condition of a diesel engine produces tough environment for valve rotation. Therefore, the valve rotation is an important problem which should be solved in the early stage of engine development. In this study, we developed a new technique to measure the valve rotation and shaking motion simultaneously using three proximity sensors. Valve train rotating properties of a diesel engine were measured under various engine operating conditions.

The Effect of Exhaust Performance by according to Active Muffler Valve Spring (능동형 소음기의 밸브 스프링이 배기 성능에 미치는 영향)

  • Kong, T.W.;Yi, C.S.;Chung, H.S.;Jeong, H.M.;Suh, J.S.;Chun, Y.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.682-687
    • /
    • 2001
  • This study represents effect of exhaust performance by according to active muffler valve spring. The experimental parameter were divided engine speed and torsion coil spring constant. The sound pressure level was generally low at engine speed 2000-2500rpm but That was showed the lowest at spring constant k=0.75. Flow speed of exhaust gas was showed the fast at spring constant k=0.75 but the low value was showed at k=0.97. It was contained a rather low concentration of carbon monoxide(CO) at engine speed 2000-2500rpm and k=0.81, low concentration of hydrocarbon(HC) at spring constant k=0.81 but that was high at spring constant k=0.97. A conclusion based on FFT analysis was generally low concentration value at k=0.79 and k=0.81. The temperature distributions into the muffler was shown similar conditions. Heat transfer was well spreaded at thermocouple No.8 because valve was opened.

  • PDF

Friction Characteristics of piston Skirt Parametric Investigation

  • Cho, Myung-Rae;Kim, Jee-Woon;Moon, Tae-Sun;Han, Dong-Chul
    • KSTLE International Journal
    • /
    • v.3 no.1
    • /
    • pp.1-6
    • /
    • 2002
  • The purpose of this paper is to investigate the effects of design parameters on the friction loss in piston skirt. An analytical model to describe the friction characteristics of piston skirt has been presented, which is based on the secondary motion of piston and mixed lubrication theory, It could be shown that the skirt friction closely depends on the side force acted on the piston pin. The side force is inf1uenced by cylinder pressure at low engine speed, but by inertia force at high engine speed. The usage of extensive skirt area and low weight piston is effective to reduce the friction loss at high speed. The low viscosity oil considerably decreases viscous friction as engine speed increases, but it increases boundary friction at low engine speed. From the parametric study, it is found that the skirt axial profile is the most important design parameter related to the reduction of skirt friction.

Study on Development of High-Speed Small Engine Controlled by EFI (Electronic Fuel Injection) (소형 고속 전자제어 연료분사 엔진 개발에 관한 연구)

  • Lee Seungjin;Ryu Jeongin;Choi Kyonam;Jeong Dongsoo
    • Journal of Energy Engineering
    • /
    • v.14 no.3 s.43
    • /
    • pp.173-179
    • /
    • 2005
  • Fuel injection system has more benefits in power, fuel consumption and emission than carburetor system even in high speed small engine. Up to date fuel injection system is used in motor car but is not used in motorcycles in Korea. EFI (Electronic fuel injection) system which has ECU can control precise fuel supply to variable RPM in engine. The purpose of this study is the investigation of effects of fuel injection system to improve the engine performance and efficiency in variable revolution of high speed small engine which is 4 Valves SOHC single cylinder engine used in motorcycle.

The Evaluation of Ship's Cruising Ability and Propulsive Performance in a Seaway (선박의 풍파중 항해능력 및 추진성능 평가에 관한 연구)

  • 김순갑
    • Journal of the Korean Institute of Navigation
    • /
    • v.14 no.2
    • /
    • pp.15-31
    • /
    • 1990
  • Recently, there is a tendency to design the large full ships with lower-powered engine as the means for energy saving in ship's navigation at seas. Such a lower-powered ship is anticipated to show the different propulsive performance in rough seas, because the fluctuation of main engine load of lower powered ship is relatively large as compared with higher-powered ship is relatively large as compared with higher-powered ship. The fluctuation of propeller load is nonlinear at racing condition in waves. It is due to the variation of inflow velocity into propeller, the propeller immersion and the characteristics of engine governor. In this paper, the theoretical calculation of the nominal speed loss and the numerical simulation for the nonlinear load fluctuation of a model ship in rough seas are carried out. From the results of calculation, the following are discussed. (1) The ratio of nominal speed loss to the speed in still water. (2) The manoeuvring ability of ship and the operational ability of main engine in a seaway. (3) A method of the evaluation for the fluctuation of propeller torque and revolution on the engine characteristics plane. (4) The effect of engine governor characteristics on the propeller load fluctuation.

  • PDF

Field Test and FEM Analytical Approach on Body Vibration for 10MW Large Low-Speed Diesel Engine Operated on Land (10MW급 대형 디젤엔진 본체의 구조진동시험 및 해석)

  • Kim, Yeon-Whan;Bae, Yong-Chae;Lee, Hyun;Lee, Young-Shin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.24-29
    • /
    • 2007
  • Low-speed Diesel Engine, 7K60MC-S, in Power Plant have been experienced high vibration frequently since these units were completed the construction works, but they did not have any fundamental vibration solutions up to date. Therefore, several vibration tests and analyses are conducted to identify the root cause of high vibration and to suggest the optimal countermeasures for diesel engine. The 9.25Hz & 25.4Hz vibrations have been observed on main body during operation. The magnitude of engine upper structural vibration is generally similar in horizontal transverse direction. However, differences in the 'Fore' and 'After' vibration magnitude at 9.25Hz occurs due to the inertia momentum added by SCR duct system with the same vibration phase angle. It is analyzed that the excess structural vibration be occurred when the natural frequency of engine body is accessed the exciting sources due to the explosion pressure and the discharge pulsation of 7 cylinders in resonance range.

  • PDF

The Study for Improving the Combustion in a D.I. Diesel Engine using Multi-cavity Piston (Multi-cavity Piston에 의한 디젤기관의 연소성 향상에 관한 연구)

  • Park, Chul Hwan;Bang, Joong Cheol
    • Journal of the Korean Society of Combustion
    • /
    • v.20 no.3
    • /
    • pp.13-20
    • /
    • 2015
  • The performance of a direct-injection diesel engine often depends on the strength of swirl or squish, the shape of combustion chamber, the number of nozzle holes, etc. This is natural because the combustion in the cylinder was affected by the mixture formation process. Since the available duration to make the mixture formation of air-fuel is very short, it is difficult to make complete mixture. Therefore, an early stage of combustion is violent, which leads to the weakness of noise and vibration. In this paper, the combustion process of a common-rail diesel engine was studied by employing two kinds of pistons. One has several cavities on the piston crown to intensify the squish during the compression stroke in order to improve the atomization of fuel, we call this multi cavity piston in this paper. The other is a toroidal single cavity piston, generally used in high speed diesel engines. To take photographs of flame and flaming duration, a four-stroke diesel engine was remodeled into a two-stroke visible single cylinder engine and a high speed video camera was used.

The Optimum Operating Condition for Reduction of Fuel Consumption -In the Case of Training Ship Pusan 402- (연료 절감을 위한 최적운전 조건 -신습선 부산 402호의경우-)

  • Kim, Yeong-Sik;Kim, Sam-Kon;Yoon, Suck-Hun
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.22 no.1
    • /
    • pp.29-33
    • /
    • 1986
  • This paper aims at finding out the optimum operating condition to reduce fuel consumption for the training ship Pusan 402 with controllable pitch propeller. For this purpose, this paper examints the variation of ship speed and fuel consumption in accordance with the change of engine revolution and propeller pitch. The results obtained are as follows: 1. When engine revolution is constant, the ship speed sluggishly increases according to the increase of propeller pitch but fuel consumption extremely increases. The higher revolution the engine is, the more remarkable this tendency is. 2. As the engine revolution becomes lower, the fuel consumption per mile decreases. Howt.er = the fuel consumption under the same engine revolution differs according to the propeller pitch. 3. Specific fuel consumption is uniformed about 180g/ps.h at any case of load. 4. Among the various operating conditions which yield the same ship speed, fuel consumption lowers in the case of lower engine revolution and larger propeller pitch.

  • PDF

High Vibration Phenomena due to Cylinder Explosion Pressure of Low-speed Diesel Engine with 7 Cylinders installed on Land (육상에 설치된 저속 7실린더 디젤엔진의 폭발 기진력 및 고진동 현상)

  • Kim, Yeon-Wahn;Bae, Yong-Chae;Bae, Chun-Hee;Lee, Young-Shin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.9
    • /
    • pp.826-834
    • /
    • 2007
  • A 7K60MC-S low speed diesel engine in a power plant has frequently experienced high vibration since the unit completed construction works. Up to date, no fundamental vibration solutions were reached. Hence, several vibration tests and analyses were conducted to identify the root cause of this high vibration and to suggest the optimal countermeasures for diesel engine. The 9.25 Hz and 25.4 Hz vibrations have been observed on main body during operation. The magnitude of engine upper structural vibration is generally similar in horizontal transverse direction. However, differences in the 'Fore' and 'After' vibration magnitude with the same vibration phase angle at 9.25 Hz occur due to the explosion pulsations of 7 cylinders and the Inertia momentum added by the SCR (selective catalytic reduction) duct system. It was analyzed that the excess structural vibration occurred when the natural frequency of engine body is affected by the exciting sources due to the explosion pressure and the discharge pulsation of the seven cylinders in resonance range.

Prestudy on Expendable Turbine Engine for High-Speed Vehicle (초고속 비행체용 소모성 터빈엔진 사전연구)

  • Kim, You-Il;Hwang, Ki-Young
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.629-634
    • /
    • 2011
  • A prestudy on expendable turbine engine for high-speed vehicle was conducted. The two possible mission profiles were established to decide the engine requirements and Design Point, and Design Point analysis was performed with the values of design parameter which were obtained from similar class engines and technical references. The results showed that Specific Net Thrust is 2599.4 ft/s and Specific Fuel Consumption is 1.483 lb/($lb^*h$) at the flight condition of Sea Level, Mach 1.2. It was also found through the performance analysis on the two possible mission profiles that major design parameters for determining Net Thrust were Turbine Inlet Temperature for low supersonic flight speed and Compressor Exit Temperature for high supersonic flight speed. In addition, simple turbojet engine with axial compressor, straight annular combustor, axial turbine and fixed throat area converge-diverge exhaust nozzle was proposed as the configuration of simple low cost light engine.

  • PDF