• 제목/요약/키워드: Engine response

검색결과 456건 처리시간 0.028초

가솔린 엔진의 소음원 검출에 대한 다차원 스펙트럼 해석의 응용 (Application of Multi-Dimensional Spectral Analysis for Noise Source Identification on Gasoline Engine)

  • 오재응;서상현
    • 대한기계학회논문집
    • /
    • 제10권4호
    • /
    • pp.442-449
    • /
    • 1986
  • 본 연구에서는 소음원 및 진동원을 규명하기 위하여 사용되어 온 종래의 주파 수응답함수(Frequency Response Function`FRF)법과 소음원 및 진동원 간에 강한 상관 관계가 존재한 경우에 사용되는 기여도함수(coherence function)법을 이용한 다차원 스텍트럼해석(Multi-Dimensional Spectral Analysis`MDSA)법에 의하여 가속도응답 및 방사음과의 기여관계를 규명하였다.

비선형 특성을 적용한 파워트레인 마운팅 시스템의 마운트 전달력 해석 (Analysis of Mount Reaction Forces for Powertrain Mounting Systems using Nonlinear Characteristics)

  • 김진훈;이수종;이우현;김정렬
    • 동력기계공학회지
    • /
    • 제12권2호
    • /
    • pp.23-28
    • /
    • 2008
  • The primary objective of this study is to truly understand reaction force be due to engine exciting force. Exciting forces of the engine apply a source of the vehicle NVH(Noise, Vibration, Harshness). To understand reaction force was applied MSC.Nastran software. Analyzed frequency response analysis of powertrain mount system. First, engine exciting force was applied field function. Also nonlinear characteristics was applied field function : such as dynamic spring constant and loss factor. And nonlinear characteristics was applied CBUSH. Generally characteristics of rubber mount is constant frequency. But characteristics of hydraulic mount depend to frequency. Therefore nonlinear characteristics was applied. Powertrain mounting system be influenced by powertrain specification, mount position, mount angle and mount characteristics etc. In this study, we was analyzed effects of powertrain mounting system. And we was varied dynamics spring constant and loss factor of mounts.

  • PDF

시간지연 모델을 이용한 비선형 연소불안정 해석기법 연구 (Numerical Analysis of Nonlinear Combustion Instability Using Pressure-Sensitive Time Lag Hypothesis)

  • 박태선;김성구
    • 대한기계학회논문집B
    • /
    • 제30권7호
    • /
    • pp.671-681
    • /
    • 2006
  • This study focuses on the development of numerical procedure to analyze the nonlinear combustion instabilities in liquid rocket engine. Nonlinear behaviors of acoustic instabilities are characterized by the existence of limit cycle in linearly unstable engines and nonlinear or triggering instability in linearly stable engines. To discretize convective fluxes with high accuracy and robustness, approximated Riemann solver based on characteristics and Euler-characteristic boundary conditions are employed. The present procedure predicts well the transition processes from initial harmonic pressure disturbance to N-like steep-fronted shock wave in a resonant pipe. Longitudinal pressure oscillations within the SSME(Space Shuttle Main Engine) engine have been analyzed using the pressure-sensitive time lag model to account for unsteady combustion response. It is observed that the pressure oscillations reach a limit cycle which is independent of the characteristics of the initial disturbances and depends only on combustion parameters and operating conditions.

음향인텐시티법을 이용한 4기통 가솔린 엔진의 소음원 검출에 관한 연구 (A study on the identification of noise sources of the 4-cylinder gasoline engine by using acoustic intensity method)

  • ;오재응;이완익;조진호
    • 오토저널
    • /
    • 제11권1호
    • /
    • pp.57-67
    • /
    • 1989
  • 본 연구에서는 음향 인텐시티법을 가솔린 엔진에 직접 적용하여, 각각의 중심주파수별 음향인텐시티 응답특성을 1/3옥타브 밴드로 구하였고, 오버올 레벨 및 최대 인텐시티레벨을 갖는 중심주파수에서의 음향 인텐시티 방사특성을 등고선 및 3차원 표시로 나타내었다. 또한 그 결 과를 분석 및 고찰하여 엔진의 중요 소음원을 검출하므로써 이 수법이 소음대책에 유효하다는 것을 검증하였다. 연구 결과, 오버올 레벨에서는 아이들링 상태의 경우 엔진 전면부에서, 2,000 rpm 상태의 경우 엔진 우측부에서 가장 높은 음향 인텐시티가 방사되었으며, 최대 인텐시티레 벨을 갖는 중심주파수에서는 오일팬과 흡, 배기매니홀드가 100Hz에서 가장 높은 음향 인텐시티를 나타내었다.

  • PDF

바이오-에탄올연료 및 분사방식에 따른 엔진 나노입자 배출 특성 (Emission Characteristics of Nano-sized Particles in Bio-ethanol Fuelled Engine with Different Injection Type)

  • 이진욱
    • 한국자동차공학회논문집
    • /
    • 제17권4호
    • /
    • pp.55-62
    • /
    • 2009
  • As an experiment investigation, the effects of ethanol blended gasoline fuel with different injection method on nano-sized particle emission characteristics were examined in a 0.5L spark-ignited single-cylinder engine with a compression ratio of 10. Because this engine nano-particles are currently attracting interest due to its adverse health effects and their impact on the environments. So a pure gasoline and an ethanol blended gasoline fuels, namely E85 fuel, used for this study. And, as a particle measuring instrument, a fast-response particle spectrometer (DMS 500) with heated sample line was used for continuous measurement of the particle size and number distribution in the size range of 5 to 1000nm (aerodynamic diameter). As this research results, we found that the effect of ethanol blending gasoline caused drastic decrease of nano-particle emissions when port fuel injection was used for making better air-fuel mixture than direct fuel injection. Also injection timing, specially direct fuel injection, could be a dominant factor in controlling the exhaust particle emissions.

물리 엔진에 관한 고찰 : 실시간 물리 기술을 중심으로 (A study on game physics engine focused on real time physics)

  • 하유종;박경주
    • 한국게임학회 논문지
    • /
    • 제9권5호
    • /
    • pp.43-52
    • /
    • 2009
  • 본 연구는 게임 물리 엔진을 실시간 물리 기술의 관점으로 고찰한다. 실시간 물리 기술이란 물리 시뮬레이션 기술을 게임에 적용하기 위해서 간략화 하는 기술을 말한다. 조사 대상으로 상용 물리 엔진인 Havok Physics SDK와 NVIDIA PhysX SDK를 선택하였고, 오픈 소스기반 물리 엔진인 ODE와 Bullet을 선택하였다. 그 결과 물리 엔진은 강체 역학, 변형체 시뮬레이션, 유체 시뮬레이션을 구현하고 있었고, 실시간 시뮬레이션을 위해서 수식의 간략화, 충돌 처리의 효율성 재고 등 소프트웨어 측면의 기술과 멀티 코어 CPU의 이용, PPU, GPU 활용 등 병렬처리 하드웨어 기술을 사용하고 있었다.

  • PDF

바이오디젤 연료 분무의 거동특성 연구 (A Study of Behavior Characteristics of Biodiesel Fuel Spray)

  • 염정국
    • 동력기계공학회지
    • /
    • 제18권5호
    • /
    • pp.156-163
    • /
    • 2014
  • Diesel engine is most suitable one for biodiesel fuel because the compression-ignition diesel engine has desirable fuel consumption due to higher thermal efficiency and in addition, the improvement of the fuel consumption also leads to a reduction of $CO_2$ emission and then it does not need to have spark-ignition system, which means that there is less charge on the technic and complexity. In this study, the spray behavior characteristics of the vegetable palm oil were analyzed by using a common-rail injection system of commercial diesel engine and the results were compared with those obtained for the diesel fuel. The injection pressures and blend ratios of palm oil and diesel(BD3, BD5, BD20, BD30, BD50, and BD100) were the main parameters. The experiments were conducted for different injection pressures: 500bar, 1000bar, 1500bar, and 1600bar by setting injection duration to $500{\mu}s$. Consequently, it was found that there is no significant difference in the macro characteristics of the spray behavior(spray penetration and spray angle) in response to change in the blend ratio of palm oil and diesel at a fixed injection pressure. In particular, all experiments showed the spray angle about $12^{\circ}{\sim}13^{\circ}$.

승용차 디젤 엔진 소음에 대한 음질 평가 기법 연구 (Study on the Sound Quality Evaluation Method for the Vehicle Diesel Engine Noise)

  • 권요섭;김찬묵;김기창;김진택
    • 한국소음진동공학회논문집
    • /
    • 제21권10호
    • /
    • pp.883-889
    • /
    • 2011
  • The brand sound of vehicle diesel engine is recently one of the important advantage strategies in the automotive company. Because various noise components masked under high frequency level can be audible in quieter driving situation. Many researches have been carried out for subjective and objective assessments on vehicle sounds and noises. In particular, the interior sound quality has been one of research fields that can give high quality feature to vehicle products. Vehicle interior noise above 500 Hz is usually controlled by sound package parts. The materials and geometries of sound package parts directly affect on this high frequency noise. This paper describes the sound quality evaluation method for the vehicle diesel engine noise to establish objective criteria for sound quality assessment. Considering the sensitivity of human hearing to impulsive sounds such as diesel noise, the human auditory mechanism was simulated by introducing temporal masking in the time domain. Furthermore, each of the human auditory organs was simulated by computer codes, providing reasonable analytical explanations of typical human hearing responses to diesel noise. This method finally provides the sound quality index of vehicle diesel engine noise that includes high frequency intermittent offensive sounds caused by impacting excitations of combustion and piston slap.

선박용 엔진 MR 마운트의 최적설계: 최대 댐핑력 (Optimal Design of Magnetorheological Mount for Ship Engines : Maximum Damping Force)

  • 박준희;도쑤웬푸;구오흥;강옥현;최승복
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2013년도 춘계학술대회 논문집
    • /
    • pp.273-278
    • /
    • 2013
  • This paper presents optimal design procedures of mount based on a magnetorheological (MR) fluid to isolate the vibration in heavy diesel engine system. At first, frequency response and force-displacement transmissibility methods are used to get required damping force that is necessary for effective vibration isolation. From this result, a new type of high damping force engine mount is proposed and the governing equation of Bingham plastic behavior of MR fluid in flow path is mathematically derived under cylindrical coordinates. Finally, parametric design optimization featuring finite element is performed using ANSYS software to get the required damping force in MR mount system which can be used to reduce engine vibration. Damping force of the MR mount is then determined as an objective function in this analysis based on ANSYS. Furthermore, Magnetic analysis is then applied in this process.

  • PDF

선박용 엔진 MR 마운트의 최적설계: 최대 댐핑력 (Optimal Design of Magnetorheological Mount for Ship Engines : Maximum Damping Force)

  • 박준희;도쑤웬푸;구오흥;강옥현;최승복
    • 한국소음진동공학회논문집
    • /
    • 제23권5호
    • /
    • pp.472-478
    • /
    • 2013
  • This paper presents optimal design procedures of mount based on a magnetorheological(MR) fluid to isolate the vibration in heavy diesel engine system. At first, frequency response and force-displacement transmissibility methods are used to get required damping force that is necessary for effective vibration isolation. From this result, a new type of high damping force engine mount is proposed and the governing equation of Bingham plastic behavior of MR fluid in flow path is mathematically derived under cylindrical coordinates. Finally, parametric design optimization featuring finite element is performed using ANSYS software to get the required damping force in MR mount system which can be used to reduce engine vibration. Damping force of the MR mount is then determined as an objective function in this analysis based on ANSYS. Furthermore, Magnetic analysis is then applied in this process.