• Title/Summary/Keyword: Engine load

Search Result 1,049, Processing Time 0.024 seconds

Improving Performance and Emissions in a Diesel Engine Dual Fueled with Compressed Natural Gas (CNG와 경유의 2원 연료 디젤기관의 성능 및 배출가스 개선을 위한 실험연구)

  • ;Masahiro Shioji
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.2
    • /
    • pp.57-63
    • /
    • 2000
  • This paper deals with a study on combustion and emission characteristics of a direct injection diesel engine dual fueled with natural gas. Dual fuelling systems tend to emit high unburned fuel especially at low load, resulting in a decreased thermal efficiency. This is because natural gas-air mixtures are too lean for flame to propagate under low load conditions. Suction air quantity and injection timing controls are very useful to improve emissions and thermal efficiency at low load.

  • PDF

Study on exhaust emission at the swirl chamber in small diesel engine (와류실식 소형디젤기관의 배기 성능에 관한 연구)

  • Myung, Byung-Soo;Lim, Jung-Ho
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.7 no.2
    • /
    • pp.153-159
    • /
    • 2004
  • The purpose of this research is to investigate the performance of swirl combustion chamber diesel engine by changing the jet passage area, the depth and shape of the piston top cavity (main chamber). The performance of diesel engine with newly changed swirl combustion chamber was tested through the experimental conditions as engine speed, load and injection timing etc. The test results were compared and analyzed. And another purpose of this research is to make a new diesel engine that is satisfied fuel consumption and regulation value of exhaust gas. 1. The rate of fuel consumption was affected significantly by the jet passage area at the high speed and load than low speed and low load. The influence of jet passage large area was proven to decrease the rate of fuel consumption. 2. Smoke was affected significantly by the depth of the piston top cavity, but exhaust temperature and the rate of fuel consumption wasn't affected. The rate of fuel consumption was affected by changing injection timing. 3. The rate of fuel consumption, exhaust temperature and Smoke were affected significantly by the shape of the piston top cavity from rectangular to trapezoid. That is we have all high value. The exhaust smoke density and exhaust gas temperature depended sensitively on variation of the injection timing rather than the shape of the combustion chamber within the experimental conditions. 4. We made a new diesel engine that is satisfied design target values(sfc=190 g/hr, NOx + THC=6.0 g/KWh, PM=0.3 KWh), the rate of fuel consumption and emission standard etc., through changing injection timing at the maximum torque point and rated power point. Although we have a little high NOx value.

  • PDF

Effect of Controlling Exhaust Valve Timing on Engine Efficiency in LIVC and EIVC States in a 2-Cylinder Small Turbo Gasoline Engine (2기통 소형 터보가솔린엔진에서 배기 밸브 타이밍 제어에 따른 LIVC, EIVC 상태에서의 엔진 효율 영향)

  • Jang, Jinyoung;Woo, Youngmin;Shin, Youngjin;Ko, Ahyun;Jung, Yongjin;Cho, Chongpyo;Kim, Gangchul;Pyo, Youngdug;Han, Myunghoon
    • Journal of ILASS-Korea
    • /
    • v.27 no.3
    • /
    • pp.117-125
    • /
    • 2022
  • This study examines whether engine fuel efficiency is improved by optimization of the exhaust valve timing in a state where the intake valve timing has been optimized in a small turbo gasoline engine that has intake cams and exhaust cams with fixed valve opening periods. When the exhaust valve is opened late, the expansion stroke is longer, and the efficiency can be improved. A 2-cylinder turbo gasoline engine with 0.8 liters of displacement and an MPI (Multi Point Injection) fuel system was used. The engine was operated at 1,500 and 3,000 rpm, and the load conditions included a partial load of 50 N·m and a high load of 70 N·m. Data was recorded as the exhaust valve timing was controlled, and this was used to calculate the efficiency of combustion using a heat release, the fuel conversion efficiency, and the pumping loss. Results and the hydrocarbon concentrations in the exhaust gas were compared for each condition. Experiment results confirmed that additional fuel efficiency improvements are possible through exhaust valve timing control at 1,500 rpm and 50 N·m. However, in other operating conditions, fuel efficiency improvements could not be obtained through exhaust valve timing control because cases where the pumping loss and fuel/air mixture slip increased when the exhaust valve timing changed and the fuel efficiency declined.

A Study on Performance and Characteristic of Exhaust emission in CNG Dedicated Engine (천연가스 전소기관의 성능 및 배출가스 특성에 관한 연구)

  • 한영출;김경배;오용석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.3
    • /
    • pp.12-17
    • /
    • 2000
  • In this study a heavy duty diesel engine was modified into a 11-liter 6-cylinder SPI CNG dedicated engine, which was tested to investigate the performance and exhaust emission under the maximum load condition as the engine speed was increased in the range of 1,000∼2,200 rpm. The exhaust emission was also measured at D-13 mode as well as AVL-8 mode.

  • PDF

Analysis of Emissions of Agricultural Tractor according to Engine Load Factor during Tillage Operation (엔진 부하율에 따른 트랙터 경운 작업 시 배기가스 분석)

  • Lee, Jun Ho;Jeon, Hyeon Ho;Baek, Seung Yun;Baek, Seung Min;Kim, Wan Soo;Siddique, Md. Abu Ayub;Kim, Yong Joo
    • Journal of Drive and Control
    • /
    • v.19 no.4
    • /
    • pp.54-61
    • /
    • 2022
  • This is a basic study analyzing emissions of an agricultural tractor during tillage operations. In this study, CO, THC, NOx, and PM considered as emission factor were analyzed during plow and rotary tillage operation by the tractor. Engine torque and rotational speed were measured through ECU. Engine power was calculated using engine torque and rotational speed. The emissions was calculated based on the number of units, rated power, load factor, and operating time. Results showed that the load factor was calculated almost twice, which was higher than 0.48. It was also observed that the emission of the tractor was variable for different agricultural operations because tractor loads were different based on operations. There was a difference in emissions due to differences in plow and rotary working hours. To estimate the emission of agricultural tractor based field operations in detail, it is necessary to consider TAF (Transient Adjustment Factor) and DFA (Deterioration factor). In the future, TAF and DFA will be considered to estimate emissions of the agricultural tractor. Finally, results of this study can contribute to the literature to estimate tractor emissions accurately.

Study on Boundary Lubrication in the Sliding Bearing System under High Load and Speed (고하중과 고속 미끄럼 베어링 시스템의 경계윤활에 대한 연구)

  • 장시열
    • Tribology and Lubricants
    • /
    • v.15 no.3
    • /
    • pp.248-256
    • /
    • 1999
  • Many tribological components in automobile engine undergo high load and sliding speed with thin film thickness. The lubrication characteristics of the components are regarded as ether hydrodynamic lubrication or boundary lubrication, whereas in a working cycle they actually have both characteristics. Many modem engine lubricants have various additives for better performance which make boundary film formation even under hydrodynamic lubrication regime. Conventional Reynolds equation with the viewpoints of continuum mechanics concerns only bulk viscosity of lubricant, which means that its simulation does not give insights on boundary lubrication characteristics. However, many additives of modern engine lubricant provide mixed modes of boundary lubrication characteristics and hydrodynamic lubrication. Especially, high molecular weight polymeric viscosity index improvers form boundary film on the solid surface and cause non-Newtonian fluid effect of shear thinning. This study has performed the investigation about journal bearing system with the mixed concepts of boundary lubrication and hydrodynamic lubrication which happen concurrently in many engine components under the condition of viscosity index improver added.

Study on Performance and An Exhaust Emission by Bio-Diesel Deterioration and Engine Load Rate at Heavy-Duty Diesel Engine (대형디젤기관에서 바이오디젤 열화와 엔진부하에 따른 배출가스특성 및 성능에 관한 연구)

  • Park, Man-Jae;Kim, Mi-Soo
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.3
    • /
    • pp.56-63
    • /
    • 2007
  • Modern diesel vehicle has to comply with the EURO IV, V regulation with low level of particulate matter and smoke emission Moreover, emission standards of each countries are becoming stringent in advanced countries such as USA and Europe. Because Bio-diesel is similar to diesel fuel, it is essential to judge the environmental and health effects deriving from the use of Bio-diesel in diesel engine. The deterioration characteristics of emission in accordance with aging vehicles must be regulated for Bio-diesel. Therefore, under 1200 driving hours, 220,000km driving distance condition and full load, the deterioration characteristics of emission were estimated. We could reduce sulfur contents of fuel, particulate matter and smoke emission by using Bio-diesel and conform the influence of engine performance, emission, and fuel consumption by Bio-diesel deterioration

A Study on the Engine Performance and Combustion Characteristics of Fish Oil in a Diesel Engine (디젤기관에서의 어유의 연소특성과 기관성능에 관한 연구)

  • 서정주;왕우경;안수길
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.3
    • /
    • pp.85-93
    • /
    • 1994
  • The engine performance and combustion characteristics of diesel oil and fish oil blended with diesel oils were investigated at various blending rate of fish oil in a diesel engine. The maximum pressure showed no significant difference among test fuels at low load, but it was higher as the blending rate of fish oil increases at high load. Increasing the blending rate of fish oil, the rate of heat release and burned fraction were higher than those of diesel oil. The ignition delay became longer than that of diesel oil as the blending rate of fish oil increases, and its differences were larger at different loads. The combustion duration and density of smoke were shorter and lower as the blending rate of fish oil increases. The rate of fuel consumption showed no significant difference between diesel oil and fish blended with diesel oils.

  • PDF

Relationships between Characteristics of Emission Gases and Engine Load Condition of Diesel Locomotive Engine (디젤기관차의 출력과 배기가스 배출특성의 상관관계 연구)

  • Cho, Young-Min;Kwon, Soon-Bak;Park, Duck-Shin;Park, Eun-Young;Lim, In-Gwon
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1558-1563
    • /
    • 2007
  • The air pollution by the diesel locomotives has become serious environmental concern because the emission gases are exhausted without any further treatment. Recently, the public interest on the air pollutants emission reduction technology is increasing due to the establishment of 'Metropolitan Air Quality Preservative Law' and the regulation of local governments on the urban air quality. In this study, we measured the concentration of particulate matters and gaseous pollutants by using a scanning mobility particle sizer, a dust spectrometer, and a stack sampler upon various engine load condition. The results show that the amount of emitted air pollutants increased upon the increase of engine power. The development of new technology to reduce the air pollutants emission is urgently required.

  • PDF

Design of Fuzzy-Power Controller for a Pump with Electric Proportional Valve (절자 비례 밸브를 갖는 펌프의 퍼지-동력제어기 설계)

  • 전순용
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.4
    • /
    • pp.441-447
    • /
    • 1998
  • Motivated by a recent work, a fuzzy-power-controller(FPC) is designed for the relieving-horsepower control of output variable pump with electrical proportional valve and actually implemented on the industrial excavator. In order to calculate the output power of pump with input of FPC, a linear discrete time model of load system to pump is obtained and the result is applied to control the engine-pump coupled system by software without pressure and flow sensor. The FPC controls the engine and pump coupled system by relieving horsepower control according to the change of load and the running conditions in relieving horsepower control are selected by fuzzy inference engine. A case study is peformed through the construction of the control device and installation on the excavator. It shows that the relieving-horsepower control system with the FPC, as suggested in this paper, is superior to the conventional PID controllers. And also, the excavator, with the FPC, shows that the power-loss of the coupled system is reduced and the running speed of the hydraulic actuator is enhanced.

  • PDF