• 제목/요약/키워드: Engine knock

검색결과 78건 처리시간 0.02초

대형 액상 LPG 분사식 SI 엔진에서 화염 가시화를 이용한 희박영역에서의 화염 전파특성 연구 (Flame Propagation Characteristics in a Heavy Duty Liquid Phase LPG Injection SI Engine by Flame Visualization)

  • 김승규;배충식;이승목;김창업;강건용
    • 한국자동차공학회논문집
    • /
    • 제10권4호
    • /
    • pp.23-32
    • /
    • 2002
  • Combustion and flame propagation characteristics of the liquid phase LPG injection (LPLI) engine were investigated in a single cylinder optical engine. Lean bum operation is needed to reduce thermal stress of exhaust manifold and engine knock in a heavy duty LPG engine. An LPLI system has advantages on lean operation. Optimized engine design parameters such as swirl, injection timing and piston geometry can improve lean bum performance with LPLI system. In this study, the effects of piston geometry along with injection timing and swirl ratio on flame propagation characteristics were investigated. A series of bottom-view flame images were taken from direct visualization using an W intensified high-speed CCD camera. Concepts of flame area speed, In addition to flame propagation patterns and thermodynamic heat release analysis, was introduced to analyze the flame propagation characteristics. The results show the correlation between the flame propagation characteristics, which is related to engine performance of lean region, and engine design parameters such as swirl ratio, piston geometry and injection timing. Stronger swirl resulted in foster flame propagation under open valve injection. The flame speed was significantly affected by injection timing under open valve injection conditions; supposedly due to the charge stratification. Piston geometry affected flame propagation through squish effects.

가변압축비 수소기관의 개발에 관한 연구 (A Study on Development of the Variable Compression Ratio Hydrogen Fueled Engine)

  • 김상만;이종윤;이종태;이성열
    • 한국수소및신에너지학회논문집
    • /
    • 제4권1호
    • /
    • pp.1-9
    • /
    • 1993
  • To find performance and knock limit for compression ratio in hydrogen fueled engine, the variable compression ratio hydrogen fueled engine which was able to vary compression ratio during firing was manufactured and estimated. The characteristics of the variable compression ratio hydrogen fueled engine were as follows : 1) compression ratio variation by moving of cylinder head, 2) OHC which can be realized low S/V ratio, short flame propagation distance and unvariable configuration of combustion chamber for compression ratio variation, 3) direct injection of hydrogen gas to restrict back fire.

  • PDF

EGR율 변화에 대한 액상 LPG분사 엔진의 운전 및 배출가스특성 (Performance and Emission Characteristics of Liquid-Phase LPG Injection Engine with Different EGR Rate)

  • 염기태;우영민;장진영;박용국;배충식
    • 한국자동차공학회논문집
    • /
    • 제11권5호
    • /
    • pp.7-14
    • /
    • 2003
  • Exhaust Gas Recirculation (EGR) system is used to reduce NOx emission, to improve fuel economy, and to suppress knock since it offers the benefits of the inlet charge dilution. The effects of EGR was investigated on the performance and emission to reduce exhaust thermal load with a single cylinder liquid-phase LPG injection engine, in a wide range of EGR rate, engine conditions and LPG proportions. As EGR rate was increased, NOx was reduced while HC was increased. Pumping loss reduction by EGR improved bsfc and increased EGR lowered exhaust gas temperature. And, LPG proportions were made a difference on the performance and emission characteristics.

프리피스톤 수소기관의 역화 및 이상연소에 관한 연구 (A Study on the Backfire and Abnormal Combustion in the Free-piston Hydrogen Fueled Engine)

  • 김강문;박상욱;이제홍;노기철;이종태;이용균
    • 한국수소및신에너지학회논문집
    • /
    • 제17권1호
    • /
    • pp.1-7
    • /
    • 2006
  • The free-piston hydrogen fueled engine is estimated as the next generation power system which can obtain high efficiency and low emission, simultaneously. In order to develop the free-piston hydrogen fueled engine, it is necessary to stable the combustion. The engine combustion, backfire and knock phenomenons were studied by using RICEM for researching combustion characteristics of free-piston engine. As the results, backfire occurrence was not observed in the free-piston engine under limited experimental condition. And knocking occurred in case of higher cylinder wall temperature.

협각 인젝터를 이용한 예혼합 압축착화 연소에서의 디젤 노킹 가시화 (Diesel Knock Visualization of Premixed Charge Compression Ignition Combustion with a Narrow Injection Angle)

  • 박성산;정용진;배충식
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제44회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.101-104
    • /
    • 2012
  • In this work, in-cylinder pressure measurements and high-speed direct imaging of the flame were performed in an optically accessible single cylinder diesel engine with premixed charge compression ignition combustion and a narrow injection angle. The results show that the frequency ranges of pressure ringing were 8.35 to 9 kHz and 12..2 to 13.1 kHz. The frequencies of the flame movement were shown as 8.7 kHz and 13 kHz. It was found that there is a direct relationship between the pressure ringing and the flame movement.

  • PDF

가솔린 예혼합 압축 착화 엔진의 농후 한계에서 연소와 노킹 특성 (Knocking and Combustion Characteristics at Rich Limit of Gasoline HCCI Engine)

  • 염기태;장진영;배충식
    • 한국자동차공학회논문집
    • /
    • 제14권6호
    • /
    • pp.9-16
    • /
    • 2006
  • Variable valve timing is one of the attractive ways to control homogeneous charge compression ignition (HCCI) engine. Hot internal residual gas which can be controlled by variable valve timing(VVT) device, makes fuel evaporated easily, and ignition timing advanced. Regular gasoline was used as main fuel and di-methyl ether(DME) was used as ignition promoter in this research. HCCI engine operating range is limited by high combustion peak pressure and engine noise. High combustion pressure can damage the engine during operation. To avoid engine damage, the rich limits have to define using various methods. Peak combustion pressure, rate of cylinder pressure rise was considered to determine rich limit of engine operating range. Knock probability was correlated with the rate of cylinder pressure rise as well as the peak combustion pressure.

Development and performance analysis of a Miller cycle in a modified using diesel engine

  • Choi, Gyeung-Ho;Poompipatpong, Chedthawut;Koetniyom, Saiprasit;Chung, Yon-Jong;Chang, Yong-Hoon;Han, Sung-Bin
    • 에너지공학
    • /
    • 제17권4호
    • /
    • pp.198-203
    • /
    • 2008
  • The objective of the research was to study the effects of Miller cycle in a modified using diesel engine. The engine was dedicated to natural gas usage by modifying pistons, fuel system and ignition systems. The engine was installed on a dynamometer and attached with various sensors and controllers. Intake valve timing, engine speed, load, injection timing and ignition timing are main parameters. The results of engine performances and emissions are present in form of graphs. Miller Cycle without supercharging can increase brake thermal efficiency and reduce brake specific fuel consumption. The injection timing must be synchronous with valve timing, speed and load to control the performances, emissions and knock margin. Throughout these tested speeds, original camshaft is recommended to obtain high volumetric efficiency. Retard ignition timing can reduce $NO_x$ emissions while maintaining high efficiency.

흡배기 밸브시기 동시 변경이 SOHC SI 엔진성능에 미치는 영향 (The Effects of Valve Timing Dual Equal Retard/Advance on Performance in an SOHC SI Engine)

  • 엄인용;이원근
    • 한국자동차공학회논문집
    • /
    • 제11권6호
    • /
    • pp.30-36
    • /
    • 2003
  • Variable valve timing(VVT) mechanisms are used widely for improving fuel consumption and reducing emissions. Most of application, however, are limited in the DOHC engine. Dual equal retard/advance strategy is relatively simple one and can be applied to both SOHC and DOHC engines. In this study, effects of dual equal valve timing retard/advance are investigated to observe the feasibility of VVT system on an SOHC SI engine. The result shows that fuel economy and emissions are improved in the dual retard condition due to increased internal EGR. Some amount of increase in volumetric efficiency can be achieved by advancing valve timing at low speed and by retarding at high speed. In this case, however, full load power is not so much improved as the volumetric efficiency increases because of severe knock. In the dual advance condition, there is no merit in the fuel economy and emission.

가솔린 엔진에서 압축비 변경 방법이 성능에 미치는 영향 (Effects of the Method of Changing Compression Ratio on Engine Performance in an SI Engine)

  • 이원근;엄인용
    • 한국자동차공학회논문집
    • /
    • 제9권4호
    • /
    • pp.27-33
    • /
    • 2001
  • In this study, it is observed that the distribution of combustion chamber volume affects the volumetric efficiency. The distribution ratio was adjusted by controlling combustion chamber volume of head and piston bowl one. Four cases were investigated, which are the combination of different distribution ratios and different compression ratios (9.8-10.0). A commercial SOHC 3-valve engine was modified by cutting the bottom face of the head and/or replacing the piston by the one that has different volume. The result shows that the less the head side volume, the more volumetric efficiency is achieved under the same compression ratio. It is also observed that increasing volumetric efficiency results in early knock occurrence due to increased "real" compression ratio. To consider reliability in estimating the volumetric efficiency, we examined the sensitivity of the AFR equation to possible errors in emission measurements. It is shown that the volumetric efficiency, which is calculated by measuring AFR and fuel consumption, can be controlled in 1% error. 1% error.

  • PDF

Multi Zone Modeling을 이용한 온도 성층화의 효과를 갖는 예혼합압축자기착화엔진의 압력상승률 저감에 대한 모사 (Effect of Thermal Stratification for Reducing Pressure Rise Rate in HCCI Combustion Based on Multi-zone Modeling)

  • 권오석;임옥택
    • 한국자동차공학회논문집
    • /
    • 제17권4호
    • /
    • pp.32-39
    • /
    • 2009
  • The HCCI engine is a next generation engine, with high efficiency and low emissions. The engine may be an alternative to SI and DI engines; however, HCCI's operating range is limited by an excessive rate of pressure rise during combustion and the resulting engine knock in high-load. The purpose of this study was to gain a understanding of the effect of only initial temperature and thermal stratification for reducing the pressure-rise rate in HCCI combustion. And we confirmed characteristics of combustion, knocking and emissions. The engine was fueled with Di-Methyl Ether. The computations were conducted using both a single-zone model and a multi-zone model by CHEMKIN and modified SENKIN.