• 제목/요약/키워드: Engine exhaust gas pipe

검색결과 67건 처리시간 0.019초

단기통 가솔린 기관의 배기단의 압력 예측 (Pressure Predictions in Exhaust Pipe of a Single Cylinder Gasoline Engine)

  • 최석천;이해종;김세현;고대권;정효민;정한식
    • 동력기계공학회지
    • /
    • 제8권1호
    • /
    • pp.24-29
    • /
    • 2004
  • In this study, a computer analysis has been developed for predicting the pipe pressure of the intake and exhaust manifold. To obtain the boundary conditions for a numerical analysis, one dimensional and non-steady gas dynamic calculation is performed by using the MOC(Method Of Characteristic). The main numerical parameters are the variation of the engine revolution to calculate the pulsating flow which the intake and exhaust valves arc working. The comparison of exhaust pressure in case of numerical results is quite matched with in case of experimental results. When engine revaluation is increased, the pressure amplitude showed a high value, but the pressure frequency was decreased.

  • PDF

관내 유속을 고려한 상선의 배기관용 소음기의 성능실험연구 (An experimental study on the performance of silencers for exhaust merchant ships considering air flow velocity)

  • 엄재광;김사수
    • 대한조선학회논문집
    • /
    • 제38권1호
    • /
    • pp.108-115
    • /
    • 2001
  • 선박의 주기관 및 발전기의 실린더내의 폭발소음은 배기관을 통하여 연돌 상부에서 전파되어 인접한 거주구 상층부 및 bridge wing 등의 소음을 증가시키는 주 요인이 되고 있다. 본 연구에서는 실제의 배기관인 400mm 및 600mm의 지름의 관에 대하여 0m/s 및 32m/s의 유속에 대하여 25dB 및 35dB silencer에 대하여 감음 성능을 실험하였다. 관내 유속은 축류 팬에 의하여 발생시켰고 실제 소음기(silencer)를 사용하여 감음 성능을 실측하였다.

  • PDF

디젤엔진 배기가스의 PM저감용 세라믹필터 집진장치 여과특성에 관한 연구 (Analysis of Filtration Characters Ceramic filter Collectors for PM removal of Diesel Engine exhaust gas)

  • 이광식;김기호;오정원;이영필
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제44회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.151-152
    • /
    • 2012
  • Collectors connected to diesel engine exhaust pipe for application of PM reduction facilities which was used to reduce PM from the exhaust gas produced from ship, Filtration performance of PM was tested. In this system, it was confirmed that the bag house can remove over 90 percent of PM from a lot of high temperature and high pressure gases produced in diesel engine. The results obtained from performance test show the potential possibility for commercialization of ceramic filter collectors which is applied to reduction facilities of flue gas produced from a diesel engine on the ship.

  • PDF

자동차용 기관의 냉각수 온도조절 최적화에 관한 연구(I) (A Study on the Optimum Cooling Water Temperature Control of an Automotive Engine(I))

  • 박경석;신진식;이경우
    • 오토저널
    • /
    • 제14권2호
    • /
    • pp.34-43
    • /
    • 1992
  • The purpose of this study is to consider the performance and exhaust characteristics in the practical engine according to the cooling water temperature change of engine and to set up the optimum cooling condition and to obtain the optimum operating condition of thermostat in the cooling system. In order to accomplish the purpose of this study, authors have used the following procedure. 1. This study is to investigate the influence of the cooling water temperature on the engine performance and the exhaust gas, authors regulated the cooling water temperature by using the special closing circuit and measured the concentration of exhaust gas by using the exhaust gas measuring system in the exhaust pipe. 2. This study carried out the experiment by regulating the opening degree of throttle valve and engine speed in the dynamometer and by changing the cooling water temperature, at the same time kept air-fuel ratio constant and made the spark ignition time MBT(Minimum spark advance for Best Torque) 3. This study measured the cooling water temperature by using the K-type thermocouple centring around the easy over-heated parts and by installing a special closing circuit. Therefore, in this study, authors intend to examine the influence of the cooling water temperature on the engine performance, exhaust gas and present the basic materials needed in the engine design including the optimum operating time control system for the cooling water temperature.

  • PDF

흡.배기 시스템의 맥동류가 과급디젤기관의 체적효율에 미치는 영향 (The Effects of Pulsating Flow on Volumetric Efficiency in the Intake and Exhaust System in a Turbocharged Diesel Engine)

  • 김경현;강희영;고대권
    • 동력기계공학회지
    • /
    • 제13권4호
    • /
    • pp.11-17
    • /
    • 2009
  • This paper deals with the effects of pulsating flow on volumetric efficiency, which may be generated during the gas exchange procedure, due to piston motion, valve event on intake and exhaust stroke and unsteady flow of turbocharger of a three-cylinder four stroke turbo-charged diesel engine. Consequently, volumetric efficiency affects significantly the engine performance; torque characteristics, fuel economy and further to emission and noise level. As the expansion ratio became larger the engine speed varies and torque increases, the pressure pulsation in an exhaust gas pipe acts as an increasing factor of intake air charging capacity totally. The phase and amplitude of pressure pulsation in the intake system only affects volumetric efficiency favorably, if it is well matched and tuned effectively to the engine. Thus, to verify the exact phase and amplitude of the pressure variation is the ultimate solution for the air-flow ratio assessment in the intake stroke. Some experimental results of pressure diagrams in the intake pipe and gas-flow of turbine in-outlet are presented, under various kinds of operating condition.

  • PDF

EGR관 형상이 가변형상 과급기를 장착한 디젤엔진의 EGR 특성에 미치는 영향 (The Effect of EGR Pipe Configuration on EGR Characteristics of Diesel Engine with Variable Geometry Turbocharger)

  • 정수진;정재우;강정호;강우
    • 한국자동차공학회논문집
    • /
    • 제15권2호
    • /
    • pp.65-73
    • /
    • 2007
  • The use of an Exhaust Gas Recirculation(EGR) for a diesel engine with variable geometry turbocharger(VGT) has confronted how to obtain the amount of EGR for NOx reduction requirement at wide operating range and less side effect. Through a combined effort of modeling(wave action simulation) and experiment, an investigation into the effect of EGR area ratio and pipe length on EGR characteristics of common rail diesel engine with VGT has been performed. For accurate computation, calibration of constants involved in empirical and semi-empirical correlations has been performed at a specific operating point, before of its use for engine simulation. From the results of this study, it was found that EGR rate is sharply increased with increasing EGR area ratio until area ratio of 0.3. However, the effect of EGR area ratio on EGR rate is negligible beyond this criteria. This study also investigates the effect of EGR pipe length on a EGR amount and pulsating flow characteristics at EGR junction. The results showed that the longer EGR pipe length, the lower EGR amount was achieved due to the flow loss resulting in lower amplitude of pressure wave.

EGR 장착 스파크 점화 LPG 엔진의 성능 및 배기특성 (Performance and Emission Characteristics in a Spark-Ignition LPG Engine with Exhaust Gas Recirculation)

  • 조윤호;구준모;장진영;배충식
    • 한국자동차공학회논문집
    • /
    • 제10권1호
    • /
    • pp.24-31
    • /
    • 2002
  • An experimental study was conducted to investigate the effects of EGR (Exhaust Gas Recirculation) variables on performance and emission characteristics in a 2-liter 4-cylinder spark-ignition LPG fuelled engine. The effects of EGR on the reduction of thermal loading at exhaust manifold were also investigated because the reduced gas temperature is desirable for the reliability of an engine in light of both thermal efficiency and material issue of exhaust manifold. The steady-state tests show that the brake thermal efficiency increased and the brake specific fuel consumption decreased with the increase of EGR rate in hot EGR and with the decrease of EGR temperature in case of cooled EGR, while the stable combustion was maintained. The increase of EGR rate or the decrease of EGR temperature results in the reduction of NOx emission even in the increase of HC emission. Furthermore, decreasing EGR temperature by $180^{\circ}C$ enabled the reduction of exhaust gas temperature by $15^{\circ}C$ in cooled EGR test at 1600rpm/370kPa BMEP operation, and consequently the reduction of thermal load at exhaust. The optimization strategy of EGR application is to be discussed by the investigation on the effect of geometrical characteristics of EGR-supplying pipe line.

6기통 가솔린 엔진에 장착된 촉매변환기 내의 3차원 비정상 유동특성 해석 (Three Dimensional Unsteady Flow Characteristics inside the Catalytic Converter of 6 Cylinder Gasoline Engine)

  • 정수진;김우승
    • 한국자동차공학회논문집
    • /
    • 제6권4호
    • /
    • pp.108-120
    • /
    • 1998
  • A theoretical study of three-dimensional unsteady compressible non-reacting flow inside double flow of monolith catalytic converter system attached to 6-cylinder engine was performed for the achievement of performance improvement, reduction of light-off time, and longer service life by improving the flow distribution of pulsating exhaust gases. The differences between unsteady and steady-state flow were evaluated through the numerical computations. To obtains the boundary conditions to a numerical analysis, one dimensional non-steady gas dynamic calculation was also performed by using the method of characteristics in intake and exhaust system. Studies indicate that unsteady representation is necessary because pulsation of gas velocity may affect gas flow uniformity within the monolith. The simulation results also show that the level of flow maldistribution in the monolith heavily depends on curvature and angles of separation streamline of mixing pipe that homogenizes the exhaust gas from individual cylinders. It is also found that on dual flow converter systems, there is severe interactions of each pulsating exhaust gas flow and the length of mixing pipe and junction geometry influence greatly on the degree of flow distribution.

  • PDF

디이젤 기관 연료분사계의 시뮬레이션 (simulation of the fuel-injection system in a diesel engine)

  • 채재우;오신규
    • 오토저널
    • /
    • 제7권2호
    • /
    • pp.45-54
    • /
    • 1985
  • Recently, the problem of exhaust gas pollution is increasingly being aggravated by the active use of the Diesel engine. For the fuel-injection system which affects the composition of exhaust gas from the Bosch type single-hole nozzle in the Diesel engine, a mathematical model was set up to study pressure variations in the high pressure pipe, the injection rate, and the needle lift. The fundamental equations of the mathematical model have been solved by the Newton Raphson Method applying the Finite Diffrence Method. The effective stroke of the injection pump plunger due to a change in engine rpm was calculated by the measurement of Control Rack, Pinion, and Plunger sizes and by the use of Characteristic Curve of Governor. The computed results for the pressure variations in the high pressure pipe and needle lift at 800 rpm and 1000 rpm are in good agreement with experimental ones in general. By a developed program, the effects of other various parameters will by calculated for the performance of the fuel-injection system.

  • PDF

기관의 비정상 배기배출에 의해 생성되는 소음에 관한 연구 (A Study on the Noise Produced by Unsteady Exhaust Efflux of Engine)

  • 이민호;박명규
    • 한국안전학회지
    • /
    • 제12권4호
    • /
    • pp.191-200
    • /
    • 1997
  • This paper discusses prediction of the sound pressure level produced by simple engine exhaust systems(plain pipe, plain expansion chamber pipe, plain expansion chamber with internally extended inlet and outlet pipe, perforated pipe enclosed in a plain expansion chamber) and a computer program has been developed which predicts the sound pressure level and the frequency spectrum. The program utilizes unsteady flow gas dynamic theory and acoustic theory to predict the pressure-time history in the exhaust system and the mass flow rate-time history at the open end of the system and the sound pressure levels(1/3 Octave band levels) and the frequency spectrum in semi-anechoic room. The predictions are compared with measured levels and show a high degree of correlation.

  • PDF