• Title/Summary/Keyword: Engine control unit

Search Result 150, Processing Time 0.029 seconds

Estimation Technique of Volatile Hazardous Air Pollutants(HAPs) Emitted from Petroleum Industrial Process/Equipment (석유정제산업 공정과 공정장비에 기인한 휘발성 유해 대기오염물질(HAPs)의 배출량 산정기법)

  • Jo, Wan Geun;Gwon, Gi Dong;Dong, Jong In;Gang, Gyeong Hui
    • Journal of Environmental Science International
    • /
    • v.13 no.7
    • /
    • pp.703-710
    • /
    • 2004
  • Petroleum refineries have been considered as an important emission source for atmospheric volatile hazardous air pollutants(HAPs). The emission source includes petroleum refinery processes and process equipment. The control strategy for volatile HAPs requires emission estimations of these pollutants. However, systematic methods of volatile HAPs emission from petroleum refineries have not yet been established. Accordingly, present study surveyed the estimation method of volatile HAPs emitted from the petroleum refinery processes and process equipment. The emission estimation methods for the petroleum refinery processes are applied for 11 petroleum refining facilities: fluidized catalytic cracking, thermal cracking, moving bed catalytic cracking, compressed engine, blowdown system, vacuum distilled column condensator, natural gas or distilled boiler, natural gas or distilled heater, oil boiler, oil heater and flare. Four emission estimation methods applied for the petroleum refinery process equipment are as follows: average emission factor approach, screening ranges approach, EPA correlation approach and unit-specific correlation approach. The process equipment for which emission factors are available are valves, pump seals, connectors, flanges and open-ended lines.

Reliability Evaluation of EDR Data Using PC-Crash & Vbox (Vbox와 PC-Crash를 활용한 EDR 기록정보의 신뢰성 평가)

  • Park, Jongchan;Kim, Jonghyuk;Oh, Wontaek;Choi, Jihun;Park, Jongjin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.3
    • /
    • pp.317-325
    • /
    • 2017
  • The EDR(Event Data Recorder) is a part of the ACU(Airbag Control Unit) functions mounted on a vehicle. EDR data have pre-crash data and post-crash data. Pre-crash data are recorded within 5 sec from time zero(AE) with 0.5 sec resolution, and reveal vehicle speed, engine rotation speed, throttle opening, brake pedal operation, acceleration pedal position and steering angle, etc. Using this EDR data, the investigation of a traffic accident can become more objective and scientific. Crash tests of three vehicles equipped with EDR function had been performed successfully. Evaluation of EDR data reliability had also been performed using Vbox and PC-Crash's sequence table function. Based on the results, we could confirm EDR data's reliability and availability for Traffic Accident Analysis by the series of this process.

Development of the Integrated Control Unit for Small CHP Gas Engine Generator (소형 열병합 가스엔진 발전 시스템의 통합 제어장치 개발)

  • Cho, Chang-Hee;Kim, Seul-Ki;Jeon, Jin-Hong;Ahn, Jong-Bo;Kim, Sung-Shin
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.539-540
    • /
    • 2006
  • 소형 열병합 (CHP, Combined Heat & Power)은 발전 용량이 1MW 이하인 발전 시스템을 지칭하는 용어로, 전기와 더불어 원동기에서 발생한 폐열을 회수하여 사용한 수 있는 발전 시스템을 말한다. 대표적인 원동기로서는 가스 엔진, 터빈, 마이크로 터빈, 연료 전지 등이 있다. 소형 열병합 시스템은 폐열 회수의 특징으로 기존 시스템에 비해 50% 이상의 에너지 이용 효율이 높으며, 기존의 대형 발전 시스템에서 필연적으로 존재하는 송전 및 배전 손실이 존재하지 않는 수요지 발전의 특징도 갖고 있어서 연료 절약형 에너지 생산 시스템으로서의 높은 가치를 가지고 있다. 또 다른 장점으로 열병합 발전 시스템은 여름철의 최대 전력 부하를 제거하는 역할을 할 수 있음으로 국가 전력 수요 공급의 안정화에 기여하는 바가 크다. 본 논문에서는 최근에 개발된 325kW급 열병합 가스엔진 발전 시스템의 주제어를 담당하는 통합 제어 장치의 개발과 소형 열병합 시스템의 시험 결과에 대해서 소개한다.

  • PDF

Evaluation of Inner Flow Characteristics of Oxygen Sensor for Vehicle Exhaust System (자동차 배기계용 산소센서 내부유동 특성 평가)

  • Han, Dae-Kwang;Suh, Ho-Cheol;Yee, Jurng-Jae;Kang, Jung-Ho;Han, Seung-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.2
    • /
    • pp.47-54
    • /
    • 2012
  • An oxygen sensor installed in vehicle exhaust systems enables to measure the amount of oxygen in the exhaust gas, in which the measured data are collected and analyzed in ECU(Engine Control Unit). The oxygen sensor is exposed to the high speed exhaust gas at high temperature circumstance, so that protection caps are required not only to protect the susceptible measuring part, but also to provide the real time measurement without time delay. In this study, a new oxygen sensor with one protection cap was proposed, and the CFD analysis was carried out in order to compare the performance characteristics, such as flow speed and ratio of AOA(Age of Air), for the conventional and new oxygen sensor. The numerical results of CFD analysis provided the flow speed of 1.34m/s and the ratio of AOA of 3.43. The similar features obtained from the numerical results showed that the new oxygen sensor guarantees the same performance characteristics of the conventional ones.

Comparison Analysis of Dynamic Characteristics of Servo-hydraulic Piezo-driven Injector between 3-way and Bypass-circuit Type (3-way형과 Bypass형 서보유압 피에조 인젝터의 구동특성 비교)

  • Jo, Insu;Jeong, Myoungchul;Lee, Jinwook
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.5
    • /
    • pp.169-175
    • /
    • 2013
  • CRDi technology of diesel engine was developed from in the early 2000s due to a need to increase fuel efficiency and environment care. Especially, high-pressure fuel injection system in CRDi system which has a fuel injection unit including an injector, a fuel pump and common-rail, etc. becomes possible to make the exhaust gas clean as well as power improvement. In this study, comparison of dynamic characteristics of servo-hydraulic piezo-driven injector with 3-way and bypass-circuit type was analyzed by using the AMESim code. As results of this study, it found the bypass-circuit inside servo-hydraulic piezo injector can cause a faster injection response than that of the 3-way type. Also it was shown that bypass-circuit type had better control capability due to hydraulic bypass system.

Development of Energy Regeneration Algorithm using Electro-Hydraulic Braking Module for Hybrid Electric Vehicles (회생제동 전자제어 유압모듈을 이용한 하이브리드 차량의 에너지 회수 알고리즘 개발)

  • Yeo, H.;Kim, H.S.;Hwang, S.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.5 no.4
    • /
    • pp.1-9
    • /
    • 2008
  • In this paper, an energy regeneration algorithm is proposed to make the maximum use of the regenerative braking energy for a parallel hybrid electric vehicle(HEV) equipped with a continuous variable transmission(CVT). The regenerative algorithm is developed by considering the battery state of charge(SOC), vehicle velocity and motor capacity. The hydraulic module consists of a reducing valve and a power unit to supply the front wheel brake pressure according to the control algorithm. In order to evaluate the performance of the regenerative braking algorithm and the hydraulic module, a hardware-in-the-loop simulation (HILS) is performed. In the HILS system, the brake system consists of four wheel brakes and the hydraulic module. Dynamic characteristics of the HEV are simulated using an HEV simulator. In the HEV simulator, each element of the HEV powertrain such as internal combustion engine, motor, battery and CVT is modelled using MATLAB/$Simulink^{(R)}$. In the HILS, a driver operates the brake pedal with his or her foot while the vehicle speed is displayed on the monitor in real time. It is found from the HILS that the regenerative braking algorithm and the hydraulic module suggested in this paper provide a satisfactory braking performance in tracking the driving schedule and maintaining the battery state of charge.

  • PDF

Analyzing of connected car vulnerability and Design of Security System (커네티트 카의 취약점 분석 및 보안 시스템 설계)

  • Kim, Tae-Hyoung;Jang, Jong-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.241-243
    • /
    • 2016
  • In the Past, Trend of car security was Physical Something like doorlock system, and The Generation did not have skills connecting External devices. Through Car Development is up, that trend of car security Changed Physical Security to Intelligence Security. This Changes give a chance to hackers to attack this system. This System use CAN(Controller Area Network) Protocol which have three vulnerabilities. First, ID Spoofing, Twice, D - Dos Attack, Third, Android Application Injected Modern cars have many ECU(Electronic Control Unit) to control devices like Engine ON/OFF, Door Lock Handling, and Controlling Handle. Because CAN Protocol spread signal using broadcast, Hackers can get the signal very easily, and Those often use Mobile devices like Android or IOS to attack this system. if bluetooth signal is spread wide, hackers get the signal, and analysis the bluetooth data, so then They makes certain data to attack ECU, they send the data to ECU, and control ECU installed car. so I suggest that I will prevent this attack to make Auth system and prevent this attack in end of Android.

  • PDF

Research on Vehicle Diagnostic and Monitoring technology Using WiBro Portable Device (와이브로 휴대기기를 사용한 차량진단 및 모니터링 기술에 관한 연구)

  • Ryoo, Hee-Soo;Won, Yong-Gwan;Park, Kwon-Chul;Ahn, Yong-Beom
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.10
    • /
    • pp.17-26
    • /
    • 2010
  • This is concerned with the technology to monitor the vehicle operation, failure and disorder by using WiBro portable device. More precisely, the technology makes it possible that the information collection device is connected to both ECU(Electronic Control Unit) which is the device for controlling engine, transmission, brake, air-bag, etc that are connected to in-vehicle network and OBD-II connector that is for data collection from various sensors. In addition, with a WiBro portable device (cell phone, PDA, PMP, UMPC, etc). equipped with a vehicle diagnostic programs, information for operation, failure and malfunction can be obtained and analyzed in real-time, and alarm is alerted when the vehicle is in abnormal status, which makes the early reactions to the status. Furthermore, the collected data can be sent through WiBro network to the server managed by the company specialized in managing the vehicles, thus the technology could help the drivers who have less knowledge about their auto-vehicles have safe and economic driving. There is always a possibility of malfunction due to various types of noise that are caused by wring-harness when the device is wired-connected. In this research, in order to overcome this problem, we propose a system configuration that can do monitoring and diagnosis with a device for collecting data from vehicle and a personal WiBro device. Also, we performed research on data acquisition and interlock for the system defined by the definition for information and data sharing platform.

A Study on Estimating Real-time Thermal Load During GHP Operation in Heating Mode (GHP 난방 모드 운전시 실시간 부하 추정방법에 관한 연구)

  • Seo, Jeong-A;Shin, Young-Gy;Oh, Se-Je;Jeong, Sang-Duck;Ji, Kyoung-Chul;Jeong, Jin-Hee
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.1
    • /
    • pp.32-37
    • /
    • 2011
  • The present study has been conducted to propose an algorithm regarding real-time load estimation of a gas engine-driven heat pump. In the study, thermal load of an indoor unit is estimated in terms of air-side and refrigerant-side. The air-side estimation is based on a typical heat exchanger model and is found to be in good agreement with experimental data. When it comes to the refrigerant-side load, a pressure difference across a valve must be estimated. For the estimation, it is assumed to be proportional to a bigger pressure difference that is available either by measurement or by estimation. Relative good agreement between the air- and refrigerant-sides suggests that the assumption may be plausible for the load estimation. The summed flow rate of all of indoor units is in good agreement with the throughput of the compressor which are calculated from the manufacturer's software. Accordingly, estimated thermal loads are also in good agreement. The proposed algorithm may be further developed for improved control algorithm and fault diagnosis.

Experimental Study of Emission Characteristics for CNG Passenger Car (CNG 승용 자동차의 배출가스 특성에 관한 실험적 연구)

  • Kim, Hyun-jun;Lee, Ho-kil
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.6
    • /
    • pp.34-39
    • /
    • 2015
  • Recently, most of the energy consumed in vehicle is derived from fossil fuels. For this reason, the demand for clean, renewable and affordable alternative energy is forcing the automotive industry to look beyond the conventional fossil fuels. Natural gas represents today a promising alternative to conventional fuels for vehicles propulsion, because it is characterized by a relatively low cost, better geopolitical distribution than oil, lower environmental impact, higher octane number and a higher self ignition temperature. Above all, CNG is an environmentally clean alternative to the existing spark ignition engines with the advantages of minimum change. In this study was installed bi-fuel system that a conventional 2 liters gasoline engine was modified to run on natural gas by a gas injection system. Experiments were mainly carried on the optimization of an ECU control strategy affecting the emission characteristics of CNG/Gasoline bi-fule vehicle. The test results shown that CO2 emission in bi-fuel mode was reduced 16% compared to gasoline fuel in the NEDC mode. Also the amount of CO and HC emissions in bi-fuel and gasoline modes were found to equality. But Compared to gasoline, the bi-fuel mode resulted in higher NOx emissions.