• Title/Summary/Keyword: Engine control room

Search Result 71, Processing Time 0.025 seconds

An Investigation of the Noise in Ship Engine-Room and Cabins for Hearing Protection (I) (청력보호를 위한 선박 기관실 및 선실소음의 조사(I))

  • Yu, Y.H.
    • Journal of Power System Engineering
    • /
    • v.3 no.3
    • /
    • pp.97-103
    • /
    • 1999
  • As the noise of ship engine room is too loud, the engineer who works in a ship engine-room has the trouble of hearing. In this paper deals the investigation of the noise of ship engine room and cabins with the internationally allowable noise exposure level and noise exposure time. Recently, the problem of engine-room noise is more serious because of shipowner wants to make small number and larger size of cylinder. Therefore, engineers work in a ship engine-room for a long time have the trouble of hearing when they are exposed the high noise level. In this study, two kinds of vessels were used to investigate the noise of engine room, engine-control room, bridge, offices and cabins. As criteria of sound levels, A-weighted sound pressure level and octave band pressure level were used.

  • PDF

A Study on Development of Industrial Engine Monitoring System Using Smart Phone Application (스마트폰 앱을 이용한 산업용 엔진의 모니터링 시스템 개발에 관한 연구)

  • Jeong, C.S.;Kim, Y.S.;Jeong, Y.M.;Kho, J.H.;Jeong, K.S.;Lee, H.S.;Yang, S.Y.
    • Journal of Drive and Control
    • /
    • v.10 no.2
    • /
    • pp.7-12
    • /
    • 2013
  • In this study, a wire/wireless communication system transmitting the operation data of engine from the ER (Engine Room) to the engine controller of ECR(Engine Control Room) has been developed through the communication of ISM(Industrial Science Medical) Band for the test operation environment improvement of medium speed engine. This wire/wireless communication system is composed of the RTU (Remote Terminal Unit) gathering and transmitting engine data as well as the MCU (Master Control Unit) receiving engine status information from the RTU to be sent to the engine controller (PLC). Through this study, a trial product of RTU and MCU has been manufactured. A test bench that has made temperature, pressure and pick-up sensor into a module for the local test of prototype was produced a test bench. In addition, at the same time save the data to a Web server and the smart phone real-time monitoring system has been developed using Wi-Fi communications. The ultimate objective of this study is to develop a wireless smart phone monitoring system of engine for the operator of engine to be able to monitor and control engine status even from the outside of engine room and control room based on this study.

Development of Power Energy Management System for Ships including Energy Saving of Separated Load Systems (개별 부하 시스템의 에너지 절감을 포함한 선박 전력 에너지 관리 시스템 개발)

  • Kang, Young-Min;Oh, Jin-Seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.1
    • /
    • pp.131-139
    • /
    • 2018
  • Many ship researches have been carried out in connection with the fourth revolution, one of which focuses on EMS(energy management system). The EMS is referred to as systems for managing the energy of ships and include various systems. In this paper, we analyze the energy saving field in ship and propose a ship power energy management system including individual load control systems that can save energy in the engine room. EMS includes individual load control systems of PCS (Pump Control System), ERFCS (Engine Room Fan Control System), LCS (Load Control System), HVACS (Heating, Ventilation, Air conditioning Control System). Proposed EMS primarily conserves energy in the individual load systems of the engine room. Secondly, the integrated monitoring and control system is used to control the power generation system and the power load system to save energy.

Design of Hall Sensor based Electronic Engine Cooling System (홀 센서 기반 전자식 엔진냉각제어 시스템 설계)

  • Koh, Young-Ho;Kim, Hyun-Hee;Lee, Kyung-Chang
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.4
    • /
    • pp.325-332
    • /
    • 2017
  • The engine cooling system is a device that maintains the temperature in the engine room at an appropriate level by driving a cooling fan when the temperature in the engine room generated during the vehicle operation occurs over a certain temperature. In recent years, the vehicle cooling system has changed to an electronic system. Therefore, in this paper, we design and develop a hall sensor based electronic engine cooling system. In this paper, a hall sensor module and an actuator module for engine cooling control system are designed. In order to verify the performance of the designed module, the magnetic field control was verified through the simulation of the diameter and the head of the coil.

Numerical analysis for development of vehicle engine room cooling hood (차량 엔진룸 냉각용 후드 개발을 위한 수치해석)

  • Lee, Suk Young
    • Journal of Energy Engineering
    • /
    • v.27 no.4
    • /
    • pp.92-97
    • /
    • 2018
  • This study deals with the numerical analysis for hood development to improve the cooling effect of the engine related components in engine room. Reducing the component temperature in engine room caused by a sudden temperature deviation can minimize the durability degradation of components. Therefore, in this study, numerical analysis for the development of the hood in engine room was carried out in four parts such as generator, battery, ECU and power steel oil which are relatively easy to control temperature among the main components in engine room. In order to verify the numerical analysis, experiments were conducted under the same conditions as those assumed in the numerical analysis.

Degradation Characteristics of Eutectic and Pb-free Solder Joint of Electronics mounted for Automotive Engine (자동차 엔진룸용 전장품 유무연 솔더 접합부의 열화특성)

  • Kim, A Young;Hong, Won Sik
    • Journal of Welding and Joining
    • /
    • v.32 no.3
    • /
    • pp.74-80
    • /
    • 2014
  • Due to environmental regulations (RoHS, WEEE and ELV) of the European Union, electronics and automotive electronics have to eliminate toxic substance from their devices and system. Especially, reliability issue of lead-free solder joint is increasing in car electronics due to ELV (End-of-Life Vehicle) banning from 2016. We have prepared engine control unit (ECU) modules soldered with Sn-40Pb and Sn-3.0Ag-0.5Cu (SAC305) solders, respectively. Degradation characteristics of solder joint strength were compared with various conditions of automobile environment such as cabin and engine room. Thermal cycle test (TC, $-40^{\circ}C$ ~ ($85^{\circ}C$ and $125^{\circ}C$), 1500 cycles) were conducted with automotive company standard. To compare shear strength degradation rate with eutectic and Pb-free solder alloy, we measured shear strength of chip components and its size from cabin and engine ECU modules. Based on the TC test results, finally, we have known the difference of degradation level with solder alloys and use environmental conditions. Solder joints degradation rate of engine room ECU is superior to cabin ECU due to large CTE (coefficient of thermal expansion) mismatch in field condition. Degradation rate of engine room ECU is 50~60% larger than cabin room electronics.

A Study on the Development of the Engine Room Fan Control System and ERFCS Algorithm for Ships Energy Saving (선박 에너지 절감을 위한 기관실 팬 제어 시스템 구축 및 알고리즘에 관한 연구)

  • Kang, Young-Min;Oh, Jin-Seok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.6
    • /
    • pp.642-648
    • /
    • 2015
  • Recently, there have been many studies pertaining to reducing energy consumption on ships. As part of those studies, the energy consumption of ships can be reduced by understanding and controlling the varying loads, excluding fixed loads. In existing ships, engine room fans are usually operated based on the actual experience of the crew without any special guidelines. To realize energy reduction, we investigate the characteristics of engine-room fans, and we propose an energy-management system called the engine room fan control system (ERFCS) and the ERFCS algorithm. The ERFCS controls the fan speed depending on the temperature and pressure, where one to four fans are operated depending on changes in the load. In addition, the minimum rotation speed of the engine-room fan was limited to 50% to prevent the surging phenomenon, which is due to fan damage or low pressure resulting from mechanical friction or heating at low fan speeds. We develop a fan control system simulation model using LabVIEW that is based on the proposed algorithm and ISO 8861. Finally, we perform simulations to confirm that operation of the proposed fan control system is possible using only 46.4% of the power required by the existing method.

Thermal Flow Analysis of an Engine Room using a Porous Media Model for Imitating Flow Rate Reduction at Outlet of Industrial Machines (다공성 매질 모델 기반 출구유량 감소 모사 기법을 이용한 산업기계용 엔진룸 열유동해석)

  • Choi, Yo Han;Yoo, Il Hoon;Lee, Chul-Hee
    • Journal of Drive and Control
    • /
    • v.19 no.1
    • /
    • pp.62-68
    • /
    • 2022
  • Considering the characteristics of industrial machines that lack vehicle-induced wind, forced convection by a cooling fan is mostly required. Therefore, numerical analysis of an engine room is usually performed to examine the cooling performance in the room. However, most engine rooms consist of a number of parts and components at specific positions, leading to high costs for numerical modeling and simulation. In this paper, a new methodology for three-dimensional computer-assisted design simplification was proposed, especially for the pile of components and parts at the engine room outlet. A porous media model and regression analysis were used to derive a meta-model for imitating the flow rate reduction at the outlet by the pile. The results showed that the fitted model was reasonable considering the coefficient of determination. The final numerical model of the engine room was then used to simulate the velocity distribution by changing the mass flow rate at the outlet. The results showed that both velocity distributions were significantly changed in each case and the meta-model was valid in imitating the flow rate reduction by some piles of components and parts.

Analysis of fan clutch characteristics for electronic engine cooling control system (전자식 엔진냉각제어 시스템을 위한 팬 클러치 특성 분석)

  • Ryu, Hye-Yeon;Kim, Hyun-Hee;Jeong, Sung-Min;Koh, Young-Ho;Lee, Kyung-Chang
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.5
    • /
    • pp.241-246
    • /
    • 2018
  • The engine cooling system is a device that keeps the temperature of the engine room at a proper level by driving the cooling fan when the engine room temperature that occurs during driving is above a certain temperature. Recently, the vehicle cooling system has been changed to electronic system. Therefore, in this paper, we will analyze the clutch operation characteristics for designing a superior electronic fan clutch. For this purpose, an electronic fan clutch was designed and a test bed for performance evaluation was constructed and analyzed.

Design of PTZ Camera-Based Multiview Monitoring System for Efficient Observation in Vessel Engine Room (선박 기관실의 효율적인 감시를 위한 PTZ 카메라 기반의 멀티뷰 모니터링 시스템 설계)

  • Kim, Heon-Hui;Hong, Sang-Jun;Nam, Taek-Kun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.7
    • /
    • pp.1129-1136
    • /
    • 2021
  • A pan-tilt-zoom (PTZ) camera-based monitoring system for efficient monitoring in the engine room of a vessel was designed. A number of places exist where traditional analog instruments are still used in vessel engine rooms, and blind spots closely related to safety exist, for which flooding or fire is a concern. A camera-based monitoring system that guarantees a wide range at a relatively fast cycle for these monitoring points can be an effective alternative to enhance the safety of a vessel. Therefore, a multiview monitoring system is proposed in which the functions of the existing PTZ camera are further strengthened using a software. The monitoring system comprises four modules: camera control, location registration, traversal control, and multiview image reconstruction. The effectiveness of the method was evaluated through a series of experiments in an engine room environment.